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ABSTRACT

There has been little work that attempts to improve the recog-

nition of spontaneous, conversational speech by adding in-

formation from a loosely-coupled modality. This study in-

vestigated this idea by integrating information from gaze into

an ASR system. A probabilistic framework for multimodal

recognition was formalised and applied to the specific case of

integrating gaze and speech. Gaze-contingent ASR systems

were developed from a baseline ASR system by redistributing

language model probability mass according to the visual at-

tention. The best performing systems had similar Word Error

Rates to the baseline ASR system and showed an increase in

keyword spotting accuracy. The key finding was that perfor-

mance improvements observed were due to increased recog-

nition accuracy for words associated with the visual field but

not the current focus of visual attention.

Index Terms— Speech recognition, Bayes procedures,

Visual system, User interfaces

1. INTRODUCTION

Multimodal interfaces that are aware of the users attention are

becoming more common and form a core part of work in mul-

timodal human computer interaction [1]. The development of

system architectures to handle multimodal dialogue includ-

ing correcting recognition errors is a current research topic

[2]. Accordingly, system functions that recognise must be re-

alised; for speaking there is Automatic Speech Recognition

(ASR) to recover word sequences; for deictic gestures such

as eye movement or gaze, there is the recognition of attentive

cues.

Motivated to achieve robust multimodal decoding func-

tions in systems by using the information from one modal-

ity to improve recognition of another, we have undertaken a

study that formalises a probabilistic multimodal recognition

framework and have applied it to integrating visual attention

with conversational speech. These ‘Gaze-contingent’ ASR

systems aim to improve the recognition of the speech and,

consequently, improve the recognition of the communicative

intent.

For these systems, we assert that the communicative in-

tent of the user manifests itself in speech through the use of

particular words or grammatical structures, and in eye move-

ment as looking at an individual visual focus or a sequence of

visual foci (i.e. visual attention). Therefore, different commu-

nicative intents will correspond to different language models

and sequences of visual foci. Accordingly, we believe that

improved keyword spotting accuracy is an appropriate crite-

rion for measuring the success of these systems in addition

to the more popular Word Error Rates (WER), because it en-

ables the word recognition performance to be measured for a

subset of the recogniser’s vocabulary; that is, the subset of the

vocabulary related to the communicative intent.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 formalises recogni-

tion problem and outlines our gaze-contingent ASR system

architecture. Section 4 describes the realisation of the gaze-

contingent ASR system variants and their evaluation: How

should it be implemented to realise recognition performance

benefits? Section 5 presents some results. Section 6 answers

this question and suggests future directions for this work.

2. RELATED WORK

In a recent comparable study, minor improvements in WER

were reported when making an ASR system gaze-contingent,

although the best performing system still had a high WER

of 68.9% [3]. The gaze-contingent ASRs in this study dif-

fer because we are interested in recognising spontaneous con-

versation between people, anticipating future multimodal sys-

tems that communicate with humans in a human-like manner,

rather than more structured dialogue.

3. THE GAZE-CONTINGENT ASR SYSTEM

3.1. Formalising recognition

For speech and visual attention, we can express the decoding

problem using probability calculus and Bayesian inference:

p(v, w|e, y) ∝ p(v, w)p(e|y, v, w)p(y|v, w)
∝ p(v, w)p(y|e, v, w)p(e|v, w)

(1)

Where e and y are the set of modality measurements m =
{e, y}, representing the sequence of feature vectors for eye
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movement and speech respectively. v and w are the sequence

of class types that represent the visual attention sequence and

the word sequence respectively.

We can simplify expression 1 by making the following

conditional independence assumptions:

• p(y|e, v, w) = p(y|v, w) and p(e|y, v, w) = p(e|v, w)
: The effect of one modality on another is only via the

other’s classification, and not the measurement of the

other modality itself.

• p(y|v, w) = p(y|w) and p(e|v, w) = p(e|v): The effect

of visual attention and speech on one another is via the

joint probability p(w, v).

• p(v, w) = p(w|v)p(v): The temporal precedence and

the relative confidence in the modality decoding schemes

dictates the direction of the dependence; this decides

whether to maximise visual attention or word sequence

first during decoding.

These assumptions yield p(w, v) in terms of the class con-

ditional probability of a word given the focus of visual atten-

tion, p(w|v), and the prior for visual attention, p(v). Thus,

for maximum likelihood:

p(v̂, ŵ|e, y) ∝ max
w

p(w|v̂)p(y|w)p(v̂)p(e|v̂) (2)

Where:

v̂ = arg max
v

p(v)p(e|v) (3)

3.2. Baseline ASR

To uncover the word sequence ŵ in expression 2, a typical

Hidden Markov Model (HMM) large vocabulary continuous

ASR system was built. The system was trained using the

WSJCAM0 [4], BNC [5], and HCRC Map Task [6] corpora.

The system was benchmarked against the standard WSJCAM0

5k test sets and showed credible performance of 20.8% WER.

3.3. Visual-attention classifier

Uncovering the visual attention v̂ in expression 2 from the eye

tracking data is straightforward; fixation events, recorded by

the eye tracker are assigned to the nearest potential focus of

visual attention:

σt = arg min
ς

D(vt, v
ς) (4)

Where σt is the closest landmark to the visual attention

that temporally corresponded to the word onset at time t, and

D(vt, v
ς) is the Euclidean distance between the landmark ς

and the visual attention position vt at time t.

3.4. Integrating gaze

To make the baseline ASR system gaze-contingent, the prob-

ability p(w|v̂) in expression 2 is estimated by modifying the

language model probability distribution p(W ) at time t to a

visual attention-specific language model pσt
(W ).

The baseline bigram language model p(W ) is constructed

using frequentist estimates of bigrams based on their occur-

rence in the BNC and HCRC map task corpora. Back-off

weights are used for the robust estimation of unseen bigrams.

The modification of the baseline language model to create

an attention-specific language model probability distribution,

pσt(W ), is realised by shifting probability mass away from

unigrams and bigrams that do not involve words associated

with the current focus of visual attention, toward unigrams

and bigrams that do.
Let W σ be the set of keywords associated with the visual

focus σ, and W σ̄ be the set of all other words in the language
model. Let m be the proportion of mass shifted from each
word. New unigram probabilities, Pσt(Wi), were calculated
from P (Wi):

Pσt(Wi) =

⎧⎪⎪⎨
⎪⎪⎩

(1−m)P (Wi) if Wi ∈ W σ̄

P (Wi) +
mP (Wi)∑

W∈W σ

P (W )

∑
W∈W σ̄

P (W ) if Wi ∈ W σ

(5)

A similar expression may be obtained for bigram proba-

bilities.

4. EVALUATION

4.1. Matched eye movement and speech data

To evaluate the systems, a set of eye movement direction data

and related spontaneous speech was collected for a human-

to-human dialogue. The candidate task that participants un-

dertook was loosely based on the HCRC Map Task corpus

[6]. There are two participants; an ‘Instruction Giver’ who

describes a geographical map comprising a number of land-

marks and a route around them, and an ‘Instruction Follower’

who recreates the map. Neither participant can see the other,

communicating via microphone and headphones only. The

Instruction Giver’s visual attention was measured using a head-

mounted eye tracker. Figure 1 shows an example map super-

imposed with the frequency distribution of eye of movements;

the darkened areas of the map around the landmarks and route

indicate high concentrations of the Instruction Giver’s visual

attention. Nine participants took part in the experiment; all

were British nationals and spoke English as their first lan-

guage. In total 18 sessions were recorded. Session durations

ranged from 5-15 minutes.

A commercial head-mounted binocular eye tracker ‘Eye-

Link’, was used for tracking the instruction givers’ eye po-

sition in relation to the map image on a computer monitor.

4434



Fig. 1. A frequency histogram showing the distribution of the

subject’s eye movements over the map.

G: top left triangle with the word start in it

F: ok

G: right now bottom left triangle with the word finish in it

F: yes

G: right if you go from the start in the middle of the page

should be a herd of four or five sheep

Fig. 2. Sample transcript from the matched eye and speech

data. ‘G’ indicates the Instruction Giver’s speech, ‘F’ the In-

struction Follower’s.

Participants’ voices were recorded on separate audio chan-

nels. The audio and eye movement data captures were syn-

chronised by tagging the eye movement data with audio sam-

ple counts during recording. Two passes of the data were

made by different human transcribers. Because the human

transcribers did not encode all pauses between words, time-

aligned transcriptions were regenerated by forced alignment;

using the baseline ASR with a language model correspond-

ing to the transcribed word sequence for each speech seg-

ment. The speech collected was spontaneous and informal,

with disfluencies present. Speakers would stutter, talk over

one another, and speak quickly. Figure 2 shows an example

of a typical dialogue.

Seven sessions were used for evaluating the gaze contin-

gent ASR; providing 1330 segments of Instruction Giver’s

speech. We rejected eye data due to non-linear horizontal

and/or vertical offsets in gaze direction and losses in the gaze

signal identified from the data. For further details of this

dataset, see [7].

4.2. Language model type

ASR systems have difficulty in recognising common, shorter

length words used in conversational speech (e.g. ‘it’, ‘if’

and ‘ok’). Shifting probability mass towards visual attention-

related words from all other words in the vocabulary may im-

prove the recognition of visual attention-related words but at

the expense of all other words in the vocabulary, potentially

leading to a rise in overall WER; to avoid this, we option-

ally shifted only probability mass between words associated

with the visual field, leaving the other words untouched. To

validate this approach two types of language model are im-

plemented - the ‘vocabulary’ and the ‘visual-field’ models.

The ‘vocabulary’ model shifts probability mass towards vi-

sual attention-related words from all other words in the vo-

cabulary. The ‘visual-field’ model shifts probability mass to

the visual-attention related words from the set of words asso-

ciated with the overall visual field. Thus, we hoped to see

whether using a gaze-contingent ASR system utilising the

latter would be superior. 99% of the probability mass was

shifted; this value was determined empirically.

We realised two gaze-contingent ASR systems: System

A used the ‘vocabulary’ language model type and System B

used the ‘visual field’ language model type.

4.3. Tests performed

The baseline ASR system generated a 250-best list for each

speech segment. For each gaze-contingent ASR system, this

list was reordered after rescoring each word sequence accord-

ing to the sequence of visual-attention specific language mod-

els; identified from the subjects’ visual attention at the time

of each word onset. Two standard measures of performance

were used: Word Error Rate (WER) and the Figure Of Merit

(FOM). FOM measures keyword spotting accuracy averaged

over 1 to 10 false alarms per hour per keyword; it is a use-

ful complement to the more frequently used WER because

it bases its estimate of performance on the ability to detect

words pertinent to the communicative intent, regardless of

their frequency of occurrence in common language. The re-

sulting measures (based on the most probable word sequence

in each list after re-ordering) for the gaze-contingent ASR

systems were compared to those of the baseline system.

5. RESULTS

The overall question in this study is whether recognition ro-

bustness can be improved by integrating gaze into an ASR

system. As the results reveal in table 1, the answer depends on

the language model type. The baseline ASR system (column

2) achieved a WER (row 2) of 52.3%. Compared with the

baseline, system A (column 3) showed a statistically signifi-

cant increase in overall WER (row 3); +3.1 (p=0.00, n=1330);

using the ‘vocabulary’ language model had the undesirable

effect of reducing the recognition accuracy for disfluency-

prone words anticipated in section 4.2. System B (column

4) showed increases in WER that were not statistically sig-

nificant; +0.5 (p=0.05, n=1330); in using the ‘visual field’

language model the recognition of disfluencies-prone words

was not compromised.
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Performance Baseline Gaze-contingent ASR

ASR A B

WER(%) 52.3 55.4 52.8
p - 0.00 0.05

FOM (%) 57.5 55.1 60.3
p - 0.32 0.40

TP (%) 74.2 79.8 69.4
p - 0.00 0.02

FA (%) 12.2 17.0 9.1
p - 0.01 0.05

Table 1. Performance for the ASR systems on collected

speech segments (n=1355). The 2-tailed t-test for paired sam-

ples was used to test significance.

System B also demonstrated an improved FOM (row 3);

+2.8% (p = 0.40, n = 42). In contrast, for system A the

FOM decreased; −2.4% (p = 0.32). Compared to WER, the

FOM results have a lower statistical significance (row 4) and

the baseline ASR system recognised the majority of keywords

without having to use the information from gaze.

Because the improvements in FOM had low statistical sig-

nificance, we looked at the component measures of FOM, the

keyword spotting True Positives (TP) and False Alarm (FA)

counts (rows 5 to 8). The changes in these measures were

statistically significant and examining them enabled us to ask

whether the desirable increase in FOM for system B was due

to an increase in TP and a reduction in FA, as one would de-

sire in a gaze-contingent ASR. The results do not show this:

both the TP and FA counts fell for system B; the increase in

FOM was due to a fall in both the TP and FA rate compared

to the baseline; −4.8% (p=0.02) and −3.1% (p=0.05) respec-

tively.

The observed fall in TP for system B lead to the key find-

ing that integrating gaze did not, on average, lead to improve-

ments in the recognition of words associated with the focus

of visual attention. What the integration did was to lower

the word probabilities for keywords associated with the visual

field except those associated with the focus of visual attention,

causing the reduction in both the TP and FA. By definition

the number of words associated with the visual field is greater

than the number associated with any one visual focus, thus the

reduction in the FA count is what makes the gaze-contingent

ASR useful.

6. CONCLUSION

Although the baseline ASR system performed well enough

to recognise occurrence of the majority of keywords with-

out having to use information from gaze, we have shown that

conversational speech recognition can be improved by proba-

bilistically reducing the recognition of words associated with

the visual field except those associated with the current fo-

cus of visual attention; we recommend this approach for de-

signing gaze-contingent ASR. For evaluating the performance

of speech-centric multimodal systems, we have demonstrated

the utility of keyword spotting metrics where the keywords

represent the communicative intent.

We constrained our evaluation to varying the language

model type; choosing the correct language model type is es-

sential for designing successful systems. A direct performance

comparison with previous gaze-contingent ASR systems is of

limited value; shared datasets may benefit future studies.

Various extensions could be made. The attention-driven

language models shifted a fixed proportion of the language

model’s probability mass to words associated with a specific

visual focus from other words. Refinements to this approach

would involve learning the temporal asynchrony between modal-

ities and the amount of probability mass to shift. Contami-

nating the acoustic signal with noise would give more scope

for performance improvements. Tracking the eye movement

against a dynamic visual field is an extension towards practi-

cal realisation which would require robust scene understand-

ing.
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