
USING VARIATIONAL BAYES FREE ENERGY
FOR UNSUPERVISED VOICE ACTIVITY DETECTION

David Cournapeau, Tatsuya Kawahara

Graduate School of Informatics, Kyoto University
Sakyo-ku, Kyoto 606-8501, Japan
david@ar.media.kyoto-u.ac.jp

ABSTRACT

This paper addresses the problem of Voice Active Detec-

tion (VAD) in noisy environments. We introduce Variational

Bayes approach to EM for classification to replace the heuris-

tic state machines. The Variational Bayes approach provides

an explicit approximation of the evidence called Free Energy.

Free Energy is used to assess the reliability of the classifi-

cation model, and can be periodically updated with a small

number of samples. We apply this scheme to the detection of

invalid classification caused in noise-only portions for more

reliable VAD, avoiding some of the heuristics conventionally

used in many VAD algorithms. An experimental evaluation

is conducted on the CENSREC-1-C database for VAD eval-

uation, and the proposed method gives a significant improve-

ment.

Index Terms— Voice Activity Detection, online EM,

Variational Bayes, Free Energy

1. INTRODUCTION

Voice Activity Detection (VAD), which automatically detects

speech from audio signals, plays an important role in many

speech applications. VAD is often used as a pre-processing

step for ASR, speaker recognition and speech coding.

Most VAD algorithms consist in two parts: the first one

performs the feature extraction, and the second one the clas-

sification. For the classification, supervised classifiers based

on techniques such as SVM [1], GMM [2] and HMM [3]

have been used. We explore another approach for unsuper-

vised, real-time classification. It is often realized with a state

machine system with a threshold based on SNR estimation.

But as noted in [2], conventional state-machine systems often

rely on heuristics for noise floor estimation. The goal of this

study is to propose a simple statistical model for online classi-

fication, providing a more robust, less heuristic classification

scheme.

We assume that a feature for VAD, such as energy, spec-

trum or High Order Statistics (HOS, as we proposed in

[4]), is distributed as a binary mixture of Gaussian, whose

state is estimated using online EM [5][6]. Each Gaussian

is then assumed to be representative of one class (speech or

non-speech). Thus, the statistical model gives a concurrent

speech/noise level estimation, without the requirement of

noise floor estimation. This method gives satisfactory results

[4], but conceptually suffers from some deficiencies: when

speech is not present for some time (or not present at all,

e.g. at the beginning of the signal), the statistical model is

forced to look for two components, which may not be repre-

sentative of two classes. In order to enhance the online EM

classification, in this paper, we incorporate assessment of the

reliability of the model, using a Bayesian approach to EM for

model comparison.

The organization of the paper is as follows: the online EM

method as well as its limitations is reviewed in Section 2. In

Section 3, we show how the evidence of the observation in a

Bayesian context can be used to overcome these limitations.

Free Energy, a practical estimation of the evidence in Varia-

tional Bayes approximation, is reviewed and its behavior on

simple examples is presented in Section 4. An evaluation on

CENSREC-1-C, a framework for noise robust VAD evalua-

tion, is then presented in Section 5.

2. ONLINE EM FOR CLASSIFICATION:
ADVANTAGES AND LIMITATIONS

When we assume unsupervised classification without training

data, the classification often relies on thresholding the fea-

ture, whose value is estimated and updated from the back-

ground noise level. Instead, we adopt a simple model where

each class (speech/non-speech) is represented by one Gaus-

sian, and use an online EM algorithm to estimate the param-

eters of the binary mixture [4]. By estimating the mixture

online, we realize a concurrent speech/noise level estimation.

Once some speech samples are available to the algorithm, the

model parameters start changing and adapting to the signal,

and the resulting probability density function (pdf) can be

used for the following classification.

Nevertheless, this scheme suffers from some deficien-

cies. First, at the beginning of the signal, because there is

only noise or speech, the training of the Bayesian classifier
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Fig. 1. Example generative model: mostly overlapping (uni-

modal) vs. well separated mixtures (multi-modal)

is highly unreliable; this problem can be somewhat alleviated

by using some heuristics (as used in many works, assuming

that the first second of the signal is noise only), but we present

a more theoretically sound solution. Also, when there is no

speech for a long time, the means of the mixture components

will become close to each other, and as such, again, the clas-

sifier will be unreliable. Both problems are related to the

fact that, when the Gaussian distributions of the mixture are

mostly overlapping, the mixture does not properly represent

two-class model as designed.

3. USING MODEL COMPARISON TO ASSESS
MODEL RELIABILITY

3.1. Revisiting the model: When does a binary mixture
really model two classes?

Intuitively, the statistical model used in online EM can be

simply described as a binary mixture, whose state changes

in time. If we generate data from a model which is ’locally’

distributed as a binary mixture of Gaussian, and whose state

can change abruptly (as in HMM), we obtain a behavior sim-

ilar to Fig. 1. In this figure, the data were generated from

four different mixtures (alternating the background to illus-

trate the change of the mixture state). We can observe that

when the components are mostly overlapping, the feature dis-

tribution looks like noise; only the second section shows there

are two different underlying classes. To answer the ques-

tion whether a given mixture models one or two classes in an

objective manner, we propose to use Bayesian inference for

model comparison, that is, whether a model with one compo-

nent or a model with two or more components is more likely

to describe the observed data.

3.2. Using Bayesian inference for model comparison

In Bayesian inference, parameters are assumed to be random

variables, and estimators are based on posterior probabilities.

One advantage of this approach is that the model itself can be

regarded as a random variable, and thus can be inferred using

the data (see [7] chapter 28). For a given Gaussian mixture

model mj of j components, the joint pdf for the observation

O, the latent data H , and the parameters θ is given by the

pdf p(O, θ, H|mj); Bayesian estimators are then based on the

posterior p(θ,H|O,mj):

p(θ, H|O,mj) ∝ p(O|θ,H, mj) · p0(θ,H|mj) (1)

where p0(θ, H|mj) is the prior of the parameters and hidden

variables given the model mj . But because the model mj it-

self is also a random variable, we can also estimate the model

posterior given the data:

p(mj |O) ∝ p(O|mj) · p(mj) (2)

The marginalized likelihood p(O|mj), also called the evi-

dence, is obtained by marginalizing over both the parameters

θ and the latent variables H:

p(O|mj) =
∫

p(O, θ, H|mj)dθdH

=
∫

p(O|θ,H, mj) · p0(θ, H|mj)dθdH (3)

To summarize, one of the advantages of Bayesian inference

is that a second level of inference is possible, namely, once

a prior on the model p(mj) is given, scoring different mod-

els can be done using the evidence (3) through eq. (2). So if

we can evaluate the integral (3) for different models, we can

compare them, and thus detect cases where the data are bet-

ter explained by one component than multiple components.

The problem is that such integrals are intractable for all but

trivial models. We will show in next Section how the Varia-

tional Bayes framework, with a few approximation, can ap-

proximate the log-evidence through a functional called Free

Energy, and provides an explicit measure for model compari-

son.

4. VARIATIONAL FREE ENERGY FOR BAYESIAN
INFERENCE

4.1. Variational Bayesian approach to mixture models

A popular way to estimate integrals such as eq. (3) is Markov

Chain Monte Carlo (MCMC). We adopt in this work another

approach, Variational Bayes (VB [8][9]), which restricts the

posterior q(θ,H) � p(θ,H|O,m) to a simpler functional

form, making the integral (3) tractable for a large class of

models, of which Gaussian mixtures are a particular case. The

later approach has an advantage of being less computationally

intensive when applicable [8].

4.1.1. Variational Bayes principles

The main idea of Variational Bayes is to restrict the posterior

q(θ,H) to a factorized form. More precisely, if:
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• The prior is conjugate to the likelihood, and

• The true posterior q(θ, H) is approximated by the fac-

torized distribution: q(θ,H) ≈ q̃(θ,H) � qθ(θ) ·
qH(H),

then the integration in eq. (3) can be done analytically. The

VB method then maximizes a cost function called Free En-

ergy with respect to the free pdf q(θ) and q(H), described in

next Sub-section.

4.1.2. Free Energy as approximation of evidence

To derive Free Energy, we start from the Kullback-Leibler

(KL) divergence between the approximate posterior q̃ and the

true one q, from which we derive the log-evidence ln p(O|m):

KL(q̃||q) �
∫

q̃(θ, H) ln
q̃(θ,H)
q(θ,H)

dθdH

� ln p(O|m) − Fm(qθ, qH) ≥ 0 (4)

where the inequality is by definition of the Kullback-Leibler

(direct consequence of the Jensen’s inequality), and Free En-

ergy Fm is defined by:

Fm �
∫

q̃(θ,H) ln
p(O, θ, H|m)

q̃(θ, H)
dθdH (5)

So maximizing Fm with respect to the approximate distribu-

tions qθ and qH minimizes the KL divergence, and approaches

the true log-evidence. To maximize Fm, we use the calculus

of variations, which is a branch of mathematics concerned

with functionals, that is functions of functions (see [10] for a

primer). By taking a partial derivative of Fm with respect to

qH and then to qθ, we obtain the following formulae:

qH(H) ∝ exp
{ ∫

ln p(O,H|θ)qθ(θ)dθ
}

(6)

qθ(θ) ∝ p0(θ) · exp
∫

ln p(O,H|θ)qH(H)dH (7)

As both eq. (6) and (7) are coupled, we iterate these equations

until convergence (measured by Fm); the algorithm is thus

similar to EM algorithm [8]. As mentioned in Section 3.2,

the log-evidence can be used for model comparison; here, we

can use Fm instead, since it is an approximation of the log-

evidence. Compared to other measures for model comparison

such as the Schwartz Information Criterion, Free Energy does

not rely on a large number of samples’ approximation. This is

particularly useful for our application, as our goal is to com-

pare models when only a few samples are available.

4.2. Examples

We implemented the above algorithm for a Gaussian mixture,

first applied it to the artificial data as shown in Section 3.1.
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Fig. 2. Results of Free Energy on synthetic data (values trans-

lated so that the minimal value is 0).
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Fig. 3. Real speech example: we compute Free Energy every

second, and sections where Free Energy is maximal for one

component model are grayed.

We performed the Variational Bayes Expectation Maximiza-

tion (VB-EM) for each section of 100 samples, with models

of one to fives components (we are mostly interested in com-

paring models with one and two components, but we display

here more models to show the global behavior of Free En-

ergy). In Fig. 2, we display the final values of Free Energy for

each model and each section. We can observe that on this par-

ticular signal, the most probable model (assuming each model

equiprobable, i.e. we adopt a flat prior for the model p(mj))
is always the one with one component, except in the second

section, where the two components are well separated.

We also computed the VB-EM on a real speech signal,

shown in Fig. 3, using the HOS feature which brought signifi-

cantly better performances than the energy feature [4]. We di-

vided the signal in sections of one second (which correspond

to approximately 60 samples in our setting, for a window size

of 30ms with 50% overlap), and compared models with one

and two components only. The sections where the model with

one component being the most probable are grayed.

This provides a simple enhancement of the online EM-

based algorithm; every new second, we compute Free En-

ergy, and discard the section if it is best explained by the

one-component model, judging that the section contains only
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Table 1. VAD performance on CENSREC-1-C database

Proposed method FAR FRR GER

high SNR 5.3 % 7.9 % 6.1 %

low SNR 7.8 % 5.4 % 6.8 %

Without model/data selection FAR FRR GER

high SNR 8.7 % 8.0 % 8.5 %

low SNR 9.5 % 9.6 % 9.5 %

noise. We then perform the classification as conventional for

other sections. The computational cost of the VB-EM method

is of the same order of complexity as the online EM method.

5. EVALUATION IN VAD PERFORMANCE

As an experimental evaluation, we tested the proposed

method on a public database, CENSREC-1 [11]. This

database consists of noisy continuous digit utterances in

Japanese. The recordings were realized in two kinds of noisy

environments (street and restaurant), and high (SNR > 10 dB)

and low (-5 ≤ SNR ≤ 10 dB) SNRs. For each of these con-

ditions, close and remote recordings were available [11]; in

this study, we used the close recordings as the HOS feature is

more suited to the close talking speech. The results are given

by frame error rates: False Alarm Rate (FAR: ratio of noise

frames detected as speech divided by the number of noise

frames), False Rejection Rate (FRR: ratio of speech frames

detected as noise divided by the number of speech frames),

and Global Error Rate (GER: weighted mean of FAR and

FRR, the weights being the relative ratio of speech and noise

frames). The results by using online EM without model/data

selection based on Free Energy are also given in Table 1. An

overall improvement is observed with the proposed method:

both FAR and FRR are reduced; the GER is reduced by 2.4

points for high SNR, and 2.7 points for low SNR.

6. CONCLUSION

A new scheme to improve the reliability of classification

based on online EM has been proposed. It uses Free Energy,

an approximation of log-evidence in the Variational Bayes

framework, to assess the classifier online. Since Free Energy

is not derived from large numbers’ approximation, it can be

used successfully with a relatively small number of samples.

The method is intended to replace the state machines, and

thus can be applied to other problems than VAD, providing a

simple statistical solution without relying on heuristics.
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