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ABSTRACT

In this work we implement a confidence estimation system based on
a Naive Bayes classifier, by using the maximum entropy paradigm.
The model takes information from various sources including a set
of scores which have proved to be useful in confidence estimation
tasks. Two different approaches are modeled. First a basic model
which takes advantages of smoothing techniques used in a previous
work, and second an optimized model, which is designed to hold
a set of very few but essential characteristics of the model, without
decrease in the performance. A considerably reduction in the num-
ber of parameters is obtained compared to the basic model. Both
models are evaluated with two different corpora and compared to a
model previously developed.

Index Terms— confidence estimation, maximum entropy, con-
fidence measures, speech recognition.

1. INTRODUCTION

Confidence estimation has been extensively studied for speech
recognition [1, 2]. Its basic goal is to estimate a confidence measure
for each word in a given hypothesis, in order to locate those words,
if any, that are likely to be incorrectly recognized. It can be seen as a
two-class pa ttern recognition problem in which each hypothesized
word is transformed into a vector and then classified as either cor-
rect or incorrect. This view provides a solid, well-known framework
within which accurate dichotomizers (two-class classifiers) can be
derived. In advance, we will denote these features as scores in or-
der to distinguish them from the features defined in the maximum
entropy models.

The maximum entropy principle has been successfully applied
in many speech processing areas, including language models [8, 10,
11] and natural language processing [9]. It is a well known method
to join information captured from various knowledge sources. In
this work we will use the maximum entropy paradigm to model like-
lihood distributions of a classifier used in confidence estimation.

The rest of the paper is divided as follow, in section 2 we present
the confidence estimation paradigm. In section 3 we describe the
maximum entropy approximation to the confidence estimation prob-
lem. In section 4 we present some experiments performed in two
different data bases. Finally, in sections 5 and 6, we discuss obtained
results and give some concluding remarks.
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2. CONFIDENCE ESTIMATION

Confidence estimation can be seen as a two-class pattern recognition
problem in which each hypothesized word is transformed into a vec-
tor of scores and then classified as either correct or incorrect. The
basic problem then is to decide which predictor (pattern) scores and
classification model should be used.

2.1. Predictor Scores

Different kind of scores have been used for confidence estimation in
speech recognition [1, 3, 4]. In this work, we have selected a set of
well-known scores that have proved to be very useful.

2.1.1. Posterior probabilities computed on word graphs

A word graph G is a directed, acyclic, weighted graph. The nodes
corresponds to discrete points in time. The edges are triplets
[w, s, e], where w is the hypothesized word from node s to node e.
The weights are the recognition scores associated to the word graph
edges. Any path from the initial to the final node forms a hypothesis
h. Given the acoustic observations ΘT

1 , the posterior probability
for a specific word (edge) [w, s, e] can be computed by summing
up the posterior probabilities of all hypotheses of the word graph
containing the edge [w, s, e]:

P ([w, s, e] | ΘT
1 ) =

1

P (ΘT
1 )

∑
h ∈ G :

∃[w′, s′, e′] :

w′ = w, s′ = s, e′ = e

P (h, ΘT
1 ) (1)

The probability of the sequence of acoustic observations P (ΘT
1 ) can

be computed by summing up the posterior probabilities of all word
graph hypotheses:

P (ΘT
1 ) =

∑
h

P (h ,ΘT
1 ) (2)

The silence arcs are considered in the same manner as the word
edges. There is not a special treatment for this kind of arcs since
they can be considered as a part of the hypotheses. These posterior
probabilities can be efficiently computed based on the well-known
forward-backward algorithm [1].The posterior probability defined
in (1) doesn’t perform well because of a word w can occur with
slightly different starting and ending times. This effect is represented
in the word graph by different word graph edges and the posterior
probability mass of the word is splitted among the different word
segmentation [1].

To circumvent this problem, we have considered two methods
following the ideas proposed in [1]. Given a specific word (edge)
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[w, s, e] and a specific point in time t ∈ (s, e), we compute the pos-
terior probability of the word w at time t by summing up the pos-
terior probabilities of the word graph edges [w, s′, e′] with identical
word w and for which t is within the interval time (s′, e′):

Pt([w, s, e] | ΘT
1 ) =

∑
∀[s′,e]:∃[w′,s′,e′],t∈(s′,e′)

P ([w, s′, e′] | ΘT
1 )

(3)
Based on (3), two different variants of the posterior probabilities are
computed for a specific word [w, s, e]:
The median of the frame time posterior probabilities (PostMed) and
the maximum (PostMax):

P ([w, s, e] | ΘT
1 ) =

1

e − s + 1

e∑
t=s

Pt([w, s, e] | ΘT
1 ) (4)

P ([w, s, e] | ΘT
1 ) = max

s≤t≤e
Pt([w, s, e] | ΘT

1 ) (5)

2.1.2. Alternative predictor scores

Acoustic stability (AS): Number of times that a hypothesized word
appears at the same position (as computed by Levenshtein align-
ment) in K alternative outputs of the speech recognizer obtained
using different values of the Grammar Scale Factor (GSF), i.e. a
weighting between acoustic and language model scores.
AcScore (AcSc): The acoustic log-score of the word divided by its
number of phones.
Word Trellis Stability (WTS): This feature was proposed in [3].
Given a word w and its starting and ending times [s, e], two variants
of the WTS are computed as:

WTS(w) = max
s≤t′≤e

C(w, t′)∑
w′

C(w′, t′)

C(w, t′) =

T∑
t=t′

∑
h∈Ht(w,t′)

(αf − αi)

where T is the number of frames of the given utterance, Ht is a set
of word-boundary partial hypotheses that are most probable at time
t for a certain range of GSF values [αi,αf ]. In addition, in each
hypothesis ofHt(w, t′) the word w must be active at time frame t′.

2.2. Naive Bayes classification model
We proposed a smoothed naive Bayes classification model [2] to
profitably combine different predictor scores. We denote the class
variable by c; c = 0 for correct and c = 1 for incorrect. Given a
hypothesized word w and a D-dimensional vector of scores x, the
class posteriors can be calculated via the Bayes’ rule as

P (c|x, w) =
P (c|w) P (x|c, w)∑
c′ P (c′|w) P (x|c′, w)

(6)

We make the naive Bayes assumption that the scores are mu-
tually independent given a class-word pair [2] . Unknown proba-
bilities are estimated by direct relative frequencies. For robustness,
this word-dependent (specific) model is smoothed using a word-
independent (generalized) naive Bayes model [2]. Classification is
performed by classifying a word as incorrect if P (c = 1 | x, w) is
greater that a certain threshold τ .

3. MAXIMUM ENTROPY APPROACH

In this work we will modify naive Bayes classification model pro-
posed in [2] by estimating P (x|c, w) densities using a maximum
entropy model. Given a class c, a hypothesized word w, and x, a
generic component of the score vector x, we can estimate P (x|c, w)
as a conditional maximum entropy model given by:

P (x/c, w) =
exp

[∑
i λkfi(x, c, w)

]
Z(c, w)

(7)

Z(c, w) =
∑
x′

exp

[∑
i

λifi(x
′, c, w)

]
(8)

Where fi(x, c, w) ∈ {0, 1} and λi are the features and the pa-
rameters of the model respectively. In order to simplify notation
fi(x, c, w) will be stated from now as fi. The rest of the model,
ie. densities P (x|c, w) and class posteriors (6) are estimated as in
[2] using naive Bayes independence assumption. Each of the fea-
tures functions is related to a constrain equation in the form of con-
ditionals expectations. Those expectations are imposed to be equal
to empirical expectations, that is, the expectation of the feature with
respect to an empirical distribution defined by the training corpus:

∑
x,c,w

P̃i(x, c, w)fi =
∑

x,c,w

P̃ (c, w)P (x/c, w)fi (9)

Distribution P̃ (c, w) is defined as:

P̃ (c, w) =

⎧⎨
⎩

N(c,w)
N

if N(c, w) > U(c)

N(c)
N

if N(c, w) ≤ U(c)

(10)

Where N is the size of the train set, and U(c) is a threshold value
which depends on the class c. We define two different approaches
in order to model the distribution (7). The first model called basic
model, is the maximum entropy version of the model described in
[2] (and briefly summarized in section 2.2). We define the set of
features and empirical expectations in a way that the resultant model
is equivalent to that model. The second model is called optimized
model. In this model we obtain a reduced set of features which holds
the essential information provided by the basic model, with a slightly
increase in performance and a dramatic reduction in the number of
parameters of the model.

3.1. Basic model

In the model described in [2], distribution P (x|c, w) is smoothed us-
ing an adapted version of the absolute discounting smoothing tech-
nique [5]. Also different smoothed distributions are used accord-
ing if the count N(c, w) is greater or lower than a class dependent
thresholdU(c). It is easy to show that all those characteristics can be
included in our maximum entropy model by defining the following
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four sets of features fk, fl, fm and fn:

fk =

⎧⎨
⎩

1 if x = xk, c = ck, w = wk,
N(x, ck, wk) > U(ck) ∀x

0 otherwise

fl =

⎧⎨
⎩

1 if x = xl, c = cl, w = wl,
N(x, cl, wl) > U(cl) for somex

0 otherwise

fm =

⎧⎪⎨
⎪⎩

1 if x = xm, c = cm, w = wm,
N(x, cm, wm) ≤ U(cm)
N(cm, x) > 0 ∀x

0 otherwise

fn =

⎧⎪⎨
⎪⎩

1 if x = xn, c = cn, w = wn,
N(x, cn, wn) ≤ U(cn) ∀x
N(cn, x) = 0 for somex

0 otherwise

and the empirical distribution for N(c, w) > U(c):

P̃ (x, c, w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(x,c,w)
N

ifN(x, c, w) > 0
∀x

N(x,c,w)−b
N

ifN(x, c, w) > 0

b P̃ (x, c)
∑

x′:N(x′,c,w)>0

1

N
∑

x′:N(x′,c,w)=0

P̃ (x′, c)
if N(x, c, w) = 0

(11)

P̃ (x, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(x, c)

N
if N(c, x) > 0 ∀ x

N(x, c) − b

N
if N(x, c) > 0

b

N

∑
x′:N(x′,c)>0

1

∑
x′:N(x′,c)=0

1
if N(x, c) = 0

(12)

Where b is a discount factor as defined in [5]. Constrain equations
(9) corresponding to the sets of features fk and fl will be associated
with the empirical distribution (11). Also, constrain equations fm

and fn will be associated with distribution (12). The proposed basic
model is slightly different from others smoothing models proposed
in language model literature [5, 10] where higher and lower order
distributions are defined according to the number of occurrences of
a train sample. On one hand our model defines just one distribution
(7), on the other hand the activation of a feature is not restricted to
triplets (xi, ci, wi) that occurred in the train set, but to the whole
events space. (x, c, w). Thus, a triplet that never occurred in the
train set, still can activate some feature of the set defined by fm or
fn.

3.2. Optimized model

As said, the main goal of this model is to provide the minimal set of
constrains that hold the most important characteristics of the model.
We first hypothesize that the word w is not essential in the model
to estimate the class c while, on the contrary, the score x is of sig-
nificant importance. Then, in order to incorporate this hypothesis to
the model we define the set of features: fa, which activates with all

the occurrences of (c = 0, x) in the space of events, fb which is
similar to fa except that this feature activates with the occurrences
(c = 1, x) in the train set, and finally fc which has an additional
requirement over the frequency of a word w.

fa =

{
1 if x = xa, c = 0
0 otherwise

fb =

{
1 if x = xb, c = 1, N(w) > 0
0 otherwise

fc =

{
1 if x = xc, c = 0, N(w) ≤ Fmax

0 otherwise

Finally, in an effort to emphasize the discrimination properties
of the score to classify classes cwe define a set of four features called
f1, f2, f3 and f4 given by:

f1 =

{
1 if x ≤ ux1, c = 0, w = w1, N(0, w1) > U(0)
0 otherwise

f2 =

{
1 if x > ux1, c = 0, w = w2, N(0, w2) > U(0)
0 otherwise

f3 =

{
1 if x ≤ ux2, c = 1, w = w3, N(1, w3) > U(1)
0 otherwise

f4 =

{
1 if x > ux2, c = 1, w = w4, N(1, w4) > U(1)
0 otherwise

Where ux1 and ux2 are threshold values determined from his-
tograms of the distribution of the score x when c = 0 and c = 1
respectively. Both sets of optimized features will be associated to
the corresponding empirical distribution P̃i(x, c, w). defined by (11)
and (12).

4. EXPERIMENTAL STUDY

We carried out experiments using two different corpora. One is the
Traveler task (Eu-I), a Spanish speech corpus of person-to-person
communication utterances at the reception desk of a hotel [6]. The
other is the FUB task (Eu-II), an Italian speech corpus of phone calls
to the front desk of a hotel [7]. Main features of the (disjoint) train-
ing and test sets, for both corpora, acquired in the context of the
EUTRANS project [6, 7], are summarized in table 1.

Table 1. Eu-I and Eu-II speech corpus.

Eu-I task Eu-II task
training test training test

# speakers 20 12 276 24
# run. words 13, 728 3, 390 52, 511 5, 381
# vocabulary 683 − 2, 459 −
bigram perplex. − 6.8 − 31

In order to evaluate classification accuracy we use the well
known measure AROC which is the area under the Receiver Op-
erating Characteristic (ROC) curve divided by the area of a worst
case diagonal ROC curve. An AROC value of 2.0 would indicate
that all words can be correctly classified. In order to compare the
maximum entropy approach to alternative confidence estimation
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criteria, we have used the predictor scores described in section 2.1.1
directly as confidence measure such as is proposed in [1]. We used
PostMax since it performs slightly better than PostMed [1]. Table
2 shows the comparative AROC values using single and combined
scores. Column labeled NB correspond to the naive bayes classifier
model described in section 2.2. The others columns correspond
to maximum entropy models both, basic (ME-BM) and optimized
(ME-OM) models. Table 3 shows the number of parameters of the
corresponding distribution for both maximum entropy models.

Table 2. AROC values for single and combined scores.

Predictor Score NB ME-BM ME-OM

Eu-I PostMax 1.89 1.89 1.90
WTS+PostMax 1.91 1.91 1.91

Eu-II PostMax 1.75 1.75 1.76
AS+AcSc+WTS+PostMed 1.84 1.84 1.84

Table 3. Number of model parameters.

Eu-I Eu-II
BM OM BM OM

PostMax 12348 93 26544 401
WTS+PostMax 38892 186 − −
AS+AcSc+WTS+MedMax − − 104912 1193

5. DISCUSSION

Table 2 shows the performance of different scores. We can see that
the combination of different scores produces better performance than
the use of a single score. This is most significant for Eu-II corpora.
We can also see that maximum entropy basic model has exactly the
same performance than the naive Bayes classifier. This is an ex-
pected result, because as said, the features of this model were de-
signed to meet this requirement. Estimation of the parameters in
maximum entropy models is usually performed using the GIS algo-
rithm [9]. In our basic model it requires no more than five iterations
for convergence, so, the CPU time involved in both model is ap-
proximately the same. It is important to note that features of the
maximum entropy model were designed to give a consistent model,
so no convergence problems were found. Then we conclude that no
significance improvement is obtained by the use of the basic model
from a practical point of view. The optimized model also produces
similar results than naive Bayes classifier and basic model, although
we have a small improvement for the single score model. The main
difference, as can be seen at table 3 is that the number of parame-
ters of the optimized model is nearly two order of magnitude lower
than the basic model. This difference not only dramatically decrease
the CPU time requirements of the model, but also permit us to gain
some insight into the model structure. A detailed analysis of the per-
formance of the optimized model, shows that performance does not
significantly decrease if we only hold features fa and fb and discard
the rest of the features. This shows that classification is performed
mainly based on the score x and that is nearly independent of the
word w. The rest of the features, highlight other minor details of the
model that also increase the performance. They include the limits
of the classification threshold of score x, (features f1 to f4), and the

frequency of the words (feature fc). We can conclude that the opti-
mized model is not only important from the computational efficiency
of the model, but also from the possibility of capture just essential
information of the model through selected features.

6. CONCLUSIONS

We have presented two maximum entropy models for estimating
confidence measures for speech recognition. The basic model is de-
voted to reproduce the main goals of a naive Bayes classifier which
has proved good performance for this problem. We also proposed
an optimized model which preserves only the essential information
needed to perform classification without loose of performance. The
basic model also includes a novel method to handle unseen data,
defining a unique distribution for unseen and seen data. Special fea-
tures, were defined in both models for handling both unseen data and
the most relevant information of the model.
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