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ABSTRACT
Previously we presented an auditory-inspired feed-forward architec-
ture which achieves good performance in noisy conditions on a seg-
mented word recognition task. In this paper we propose to use a
modi ed version of this hierarchical model to generate features for
standard Hidden Markov Models. To obtain these features we rstly
compute the spectrograms using a Gammatone lterbank. A ltering
over the channels permits to enhance the formant frequencies which
are afterwards detected using Gabor-like receptive elds. Then the
responses of the receptive elds are combined to complex features
which span the whole frequency range and extend over three dif-
ferent time windows. The features have been evaluated on a sin-
gle digit recognition task. The results show that their combination
with MFCCs or RASTA features yields improved recognition scores
in noise.

Index Terms— Speech recognition, Robust features

1. INTRODUCTION

State of the art automatic speech recognition (ASR) systems using
Mel Frequency Cepstral Coef cients (MFCCs) achieve high recogni-
tion performance on clean signals. For many applications, humanoid
robotics in particular, the signals are highly noisy and the perfor-
mance of conventional ASR systems decreases drastically. On the
other hand, human speech perception is far less susceptible to such
distortions [1]. Therefore, we believe that a higher robustness in
speech recognition can be obtained by using auditory-inspired fea-
tures.

Moreover, Shamma showed that the primary auditory cortex of
young ferrets has a spectro-temporal organization, i.e. the receptive

elds are selective to modulations in the time-frequency domain and,
as in the visual cortex, have Gabor-like shapes [2]. These receptive

elds have been modeled by Chin [3] and used for source separation
[4] and speech detection [5]. Gabor features extraction has also been
used for ASR by Kleinschmidt in [6].

In a previous work [7], we proposed a feed-forward neural net-
work for isolated monosyllabic word recognition. This system, in-
spired from the visual object recognition system described in [8],
contains three hierarchically-organized layers: the rst layer detects
local spectro-temporal patterns in whole words’ spectrograms, the
second one combines these patterns to more complex ones, and, -
nally, linear discriminant classi ers are used to build the word mod-
els. Despite good robustness against additive noise, these models
required that all the words were previously segmented and that they
all had the same length. A linear interpolation was performed on
the spectrograms to normalize their lengths, but the performance in
clean conditions was not satisfactory.

The work presented in this paper retains the principle that a
spectro-temporal, hierarchical processing of the speech improves the
robustness of speech recognition, but uses Hidden Markov Models
(HMMs) instead of linear discriminant classi ers. These Hierarchi-
cal Spectro-Temporal (HIST) features permit to overcome the seg-
mentation and normalization issue of our previous system.

In section 2, the computation and enhancement of the spectro-
grams are described. The hierarchical processing extracting HIST

features from the spectrograms is explained in section 3. Finally, the
performance on a single digits recognition task is shown in section
4. The feature extraction process is visualized in Fig. 1.

2. PREPROCESSING

The spectrograms of the speech signals are computed using a Gam-
matone lterbank. We used an IIR implementation of the Gamma-
tone lterbank [9] having 128 channels ranging from 80Hz to 8 kHz
using a sampling rate of 16 kHz. The spectrograms are obtained by
recti cation and low-pass ltering of the lterbank response. The
sampling rate of the spectrograms is then reduced to 400 Hz.

Subsequently, we perform some preprocessing on the spectro-
grams aiming at enhancing the formant frequency. First the in u-
ence of the speech excitation signal is compensated by emphasizing
the high high frequencies by +6 dB per octave resulting in attened
spectrograms. Next, a set of Mexican Hat lters along the frequency
axis is used to remove the harmonic structure of the spectrograms,
resulting in an enhancement of the formant frequencies. For this

ltering the size of the lters’ kernel is channel-dependent, vary-
ing from 90 Hz for low frequencies to 120Hz for high frequencies.
This takes the logarithmic arrangement of the center frequencies in
the Gammatone lterbank into account.

Figure 2 shows the enhanced spectrograms of the digit ”one”
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Fig. 2. Enhanced spectrogram of the digit ”one” spoken by a male
speaker. Without noise (a) and with babble noise added at an SNR
of 5 dB (b).
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Fig. 1. Overview of the feature extraction process.

spoken by a male American speaker in clean conditions and when
the signal is distorted by additive babble noise at 5 dB SNR.

3. HIERARCHICAL SPECTRO-TEMPORAL FEATURES

3.1. First stage: Extraction of local features

We want to detect local patterns in the spectrogram S obtained after
the preprocessing described in section 2. Note that the spectrogram
S can be interpreted as a 2D image.

The feature extraction is done by a 2D ltering with a set of n1

receptive elds wl
1, taking the absolute value of the response:

ql
1(t, f) =

˛̨
˛
“
S ∗wl

1

”
(t, f)

˛̨
˛ , (1)

where the responses ql
1 of each neuron have the same size as the

input spectrogram.
As in [7], n1 = 8 relevant receptive elds have been learned

using Independent Component Analysis (ICA) on 3500 randomly
selected local 8 × 8 patches of the enhanced spectrograms taken
from the training part of the database.

For a given point (t, f) in the spectrogram, the activity ql
1(t, f)

of the lth neuron reveals how close a local patch of S centered in
(t, f) is to the pattern l. For each local patch only the highest cor-
related patterns are of interest. Therefore, we perform a Winner-
Take-Most (WTM) competition which inhibits the response of the
less active neurons at the position (t, f):

rl
1(t, f) =

8
<
:

0 if ql
1(t,f)

M(t,f)
< γ1 or M(t, f) = 0

ql
1(t,f)−γ1M(t,f)

1−γ1
else,

(2)
where M(t, f) = maxk qk

1 (t, f) is the maximal value at position
(t, f) over the eight neurons and 0 ≤ γ1 ≤ 1 is a parameter control-
ling the strength of the competition [8].

Furthermore, a nonlinear transformation including a threshold
θ1 is applied on all the rl

1(t, f):

sl
1(t, f) = H(rl

1(t, f)− θ1), (3)

where H(x) is the Heaviside step function.
Finally, the resolution of the images sl(t, f) is four times re-

duced in both frequency and time directions, i.e. there are now 32
frequency channels and the sampling rate is 100 Hz. The images are
smoothed with a 2D Gauss lter g1 prior to downsampling:

cl
1(t, f) =

“
sl
1 ∗ g1

”
(4t, 4f). (4)

3.2. Second stage: Extraction of combination features

Each of the n2 combination patterns is composed of n1 receptive
elds wk

2,l, i.e. one for each of the neurons in the previous stage.
The coef cients of these receptive elds are non negative and span
all frequency channels. Similarly to (1) the activity qk

2 (t) of the kth
neuron at the time t is given by:

qk
2 (t) =

n1X

l=1

“
cl
1 ∗wk

2,l

”
(t, f). (5)

As the combination patterns span the whole frequency range the re-
sponse of the neurons does not depend on f anymore. This means
that, by computing the convolution, the patterns wk

2,l are only shifted
in the time direction. It should also be noted that the absolute value
is not required in (5) as both the cl

1 and the wk
2,l are non-negative.

The combination patterns are learned in an unsupervised man-
ner using Non-Negative Sparse Coding (NNSC) [10]. NNSC differs
from NMF by the presence, in the cost function (6), of a sparsity
enforcing term which aims at limiting the number of non-zero co-
ef cients required for the reconstruction. Consequently, if a feature
appears often in the data, it will be learned, even if it can be ob-
tained by a combination of two or more other features. Therefore,
the NNSC is expected to learn complex and global features appear-
ing in the data.

From the training database we compute the cl
1 spectrograms for

the signals containing only one digit. We then cut out patches of
length Δ out of these images. From these patches we learn n2 = 50
combination features by minimizing the following cost function [8]:

E =
X

p

‖Pp −
n2X

k=1

αp
kw

k
2‖2 + β

X

p

n2X

k=1

|αp
k| . (6)

where Pp is a tensor representing the n1 layers of the pth patch,
the wk

2 are n2 non-negative tensors each of them containing the n1

receptive elds wk
2,l, the αp

k are nonnegative reconstruction factors,
and β is a parameter allowing to control the sparsity of the learned
features.

Three different sets of combination features have been learned
for Δ = 40, 80, and 160 milliseconds. For each set we obtain
n2 = 50 features

`
q1
2(t), . . . , qn2

2 (t)
´T

. The feature rate is 100Hz.
For each feature set delta (resp. double-delta) features are com-

puted using a 9th order FIR lowpass (resp. bandpass). The dimen-
sionality of the feature vectors is then reduced from 150 to 39 using
Principal Component Analysis (PCA). For each set the coef cients
of the PCA are learned on the clean part of the database.
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Finally the 3 feature vectors corresponding to the 3 different
time windows are concatenated and the dimension is reduced to 39
using a new PCA. For computational reasons the PCA is split in two
steps: rstly it is calculated on each feature set and then on the con-
catenated features.

4. RECOGNITION PERFORMANCE

4.1. The recognition task

Even if an evaluation on the Aurora-2 database [11] would have been
desirable, due to the time intensive processing of the current Matlab
implementation, we restricted this test to the single digits part of
the TIDigits corpus [12]. The utterances of the test database have
been mixed with additive noise in a similar way as in the Aurora-2
framework. Some differences to the Aurora-2 database have to be
pointed out:

• Signals are downsampled to 16 kHz instead of 8 kHz.
• Only signals containing one single digit are kept.
• When mixing the signals with noise using FaNT [13] the

G.712 is only used for the noise and signal level estimation,
i.e. the obtained signals have no channel distortions.

• Three types of noise from the Noisex database [14] have been
used: Babble, Factory, and Car.

Both the training and test databases contain 326 utterances for
each of the 11 digits. These digits are spoken by different speak-
ers (boys, girls, women, and men) each speaker uttering each digit
twice. The speakers in the test database are different from those in
the training database.

The Hidden Markov Models are trained on clean signals with
HTK [15] using the same parameters as in the Aurora-2 framework
[11]. Whole word HMMs contain 16 states without skip over states
and a mixture of 3 Gaussians with a diagonal covariance matrix per
state. See [11] for a complete description of Aurora-2’s backend, the
only difference with our backend being the absence of a model for
pauses between words, which is irrelevant for a single digit recogni-
tion task.

4.2. Comparison with State of the Art features

In order to compare the performances of the proposed features, the
recognition task has also been performed using MFCCs and RASTA-
PLP features. 12 MFCCs are used, without the zeroth coef cient,
with the logarithmic frame energy plus the corresponding delta and
double-delta coef cients. Cepstral Mean Subtraction has been ap-
plied on the MFCCs. For the RASTA-PLP features we use an order
of 14 for the linear prediction and also use delta and double-delta
coef cients. In all cases the HMMs are trained on clean signals.
Furthermore, the different types of features have been combined to
study their complementarity.

When the signals are mixed with factory noise (Fig. 3 (a)), the
performance of MFCCs decreases rapidly when the SNR is smaller
than 15 dB. The RASTA features show a better robustness and per-
form better than MFCCs except for clean. The performance of the
proposed HIST features decreases more smoothly when the noise
level increases but they do not perform well on high SNRs and there-
fore only catch up on the RASTA features when the SNR is bellow
0 dB. The relatively poor performance of the HIST features for high
SNRs can be explained by the large time windows used to com-
pute them. However, the best word error rates (except for clean
and −5 dB) are obtained by concatenating the HIST features with
RASTA features. The success of this combination suggests that the

proposed features use information complementary to RASTA-PLP.
In clean conditions the MFCCs perform best (0.17% WER, 6 errors)
but the difference with RASTA (0.2%, 7 errors) and the combination
of RASTA and HIST features (0.25%, 8 errors) is not statistically
signi cant.

In the presence of babble noise (Fig. 3 (b)), the MFCCs per-
form better than on factory noise but are as before outperformed by
RASTA features when the SNR decreases (below 15 dB). Concern-
ing the proposed features the two facts observed on factory noise are
con rmed: the performance of the features are poor for low noise
levels but the features are complementary to RASTA and their com-
bination yields good performance in all cases. Similar results have
also been observed in the presence of car noise. However this noise
interferes only mildly with speech and all the features performed
very well.

Figures 3 (c) and (d) show the relative improvement of the dif-
ferent combinations of features w.r.t. RASTA features in the presence
of the two types of noise previously studied. Additionally to the
combination of HIST and RASTA features, the performance of the
combination of MFCCs and RASTA and a combination of MFCCs
and HIST features are drawn.

With factory noise (Fig. 3 (c)), only the combination of RASTA

and HIST features shows better performance than the baseline. The
two other combinations perform most of the time worse than pure
RASTA features. In the presence of babble noise (Fig. 3 (d)), the
combination of MFCCs and RASTA features is interesting at high
SNRs with, in particular, an improvement of more than 40% over
RASTA features at 20 dB SNR. However, the combination of HIST

and RASTA features shows, as before, the best robustness.
The better robustness of the proposed HIST features might only

be due to the larger length of the analysis windows used to compute
the features. In order to rule out this hypothesis, in a last set of ex-
periments, we also used MFCCs with larger time windows. Similar
to HIST features we calculated MFCCs for 40, 80, and 160 ms, with
39 coef cients. We then combined the features of these three time
windows yielding 113 coef cients and applied a PCA retaining only
39 coef cients. These 39 coef cients were then combined with the
standard MFCCs evaluated on 25 ms. Due to technical issues we did
not use RASTA features. The results in Fig. 3 (e) and (f) show that
the gain in performance using the standard MFCCs and the HIST fea-
tures is larger than the one obtained by the combination of MFCCs of
length 25, 40, 80, and 160 ms. Therefore, we assert that the perfor-
mance improvement given by the proposed HIST features is not just
due to the use of larger analysis windows but that these features also
extract information which is complementary to the one captured by
the conventional features.

Finally, we also applied a MVA post-processing [16] on MFCCs
and HIST features. It signi cantly improved the performance of both
type of features at SNRs below 10 dB but did not change the ranking.

5. DISCUSSION & SUMMARY

In this paper a new type of features for speech recognition has been
proposed. These features are inspired from recent research on the
importance of spectro-temporal processing in the primary auditory
cortex. The features are computed by detecting local patterns in the
spectrograms and combine them into complex patterns spanning the
whole frequency spectrum.

The test on a speaker-independent single digit recognition task
shows that these features alone currently are only competitive to con-
ventional features at low SNRs. However, they seem to capture com-
plementary information to MFCCs and RASTA features as a combi-
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Fig. 3. Comparison of the performance in the presence of factory noise (a) or babble noise (b). Performance of the features relatively to the
RASTA-PLP features in the presence of factory noise (c) or babble noise (d). Comparison of the proposed combination with MFCCs combined
with MFCCs using 40, 80, and 160 ms analysis windows in the presence of factory noise (e) or babble noise (f).

nation with either one of these yields a signi cant higher robustness
in noise. Moreover, the sampling rate used for the HIST features is
rather low and the parameters of the feature extraction, and espe-
cially the competition mechanism, are not yet fully optimized, leav-
ing substantial room for improvement of the HIST features, alone
as well as in combination with the RASTA features. Tests on more
challenging tasks, e.g. continuous speech recognition, are necessary
to better asses the performance of the features. The single digit task
is quite easy in clean condition and makes it dif cult to evaluate the
difference of performance between the features at high SNRs.
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