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ABSTRACT

It is well-known that the high correlation existing in speech signals
is very helpful in various speech processing applications. In this
paper, we propose a new concept of context-dependent quantization,
in which the representative parameter (whether a scalar or a vec-
tor) for a quantization partition cell is not fixed, but depends on the
signal context on both sides, and the signal context dependencies
can be trained with a clean speech corpus or estimated from a noisy
speech corpus. This results in a much finer quantization based on
local signal characteristics, without using any extra bit rate. This
approach is equally applicable to all (scalar or vector) quantization
approaches, and can be used either for signal compression in dis-
tributed speech recognition (DSR) or for feature transformation in
robust speech recognition. In the latter case, each feature parameter
is simply transformed into its representative parameter after quanti-
zation. In preliminary experiments with AURORA 2 and simulated
GPRS channels, this concept is integrated with a recently proposed
Histogram-based Quantization (HQ), the partition cells of which are
also dynamic depending on local signal statistics. Significant per-
formance improvements were obtained with the presence of both
environmental noise and transmission errors.

Index Terms— Speech recognition, quantization, robustness

1. INTRODUCTION

The client-server framework for Distributed Speech Recognition
(DSR) has been widely considered. In this framework, speech features
are extracted and quantized in the hand-held clients, and recognition
is performed at the server [1]. Robust speech recognition has also
been an important topic considered by many research groups, in
which the speech signals to be recognized may be seriously corrupted
by additive or convolutional environmental noise. When considering
the characteristics of speech signals, it is a well-known fact that the
high correlation existing in speech signals is very helpful in various
speech processing applications. It is also well-known that for human
perception, speech is recognized based on not only the present signal
values, but also on the changes in context [2]. Transform coding and
differential encoding take context into consideration when performing
quantization, and have been widely used for decades [2, 3, 4]. These
approaches exploit inter-frame or intra-frame correlations among
feature vectors and have been shown to reduce transmission rates
significantly. These facts indicated that quantization approaches not
using context information are relatively inadequate, because in such
approaches, feature parameters with different context are quantized
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or transformed to the same representative value as long as they are in
the same partition cell; thus signal information is not fully utilized.
Therefore, properly utilizing context information in quantization to
improve robustness against transmission errors and environmental
noise is an important issue.

In this paper, we propose a new concept of context-dependent
quantization, in which the representative parameters for each partition
cell are not fixed, but are dependent on the context codewords. The
context dependency of speech signals used in such quantization ap-
proaches can be trained with a clean speech corpus or estimated from
a noisy speech corpus. This concept is integrated with the recently-
proposed Histogram-based Quantization (HQ) [5, 6, 7], and the sig-
nificantly improved performance indicates that the context-dependent
quantization is very effective for both distributed and robust speech
recognition.

2. PROPOSED APPROACH

2.1. Context-dependent Quantization

In conventional (scalar or vector) quantization, a parameter yt at time
t (either a scalar or a vector) is mapped to a representative parameter
zi (either a scalar or a vector), which is in turn represented by a
codeword or bit pattern wt, if yt is within a certain partition cell Qi,

yt → Q(yt) = zi, wt = b(Q(yt)) = b(zi), if yt ∈ Qi, (1)

where Q(·) is the quantization process and b(·) represents the in-
dex of codeword or bit pattern. The concept of context-dependent
quantization is very simple. It keeps all the original partition cells
unchanged, except now the representative parameters zi are not fixed,
but are dependent on the left and right context. Assume in addition the
parameter yt has a left context parameter yt−1 with codeword m and
a right context parameter yt+1 with codeword n, yt−1 → Q(yt−1),
b(Q(yt−1)) = m, yt+1 → Q(yt+1), b(Q(yt+1)) = n. The repre-
sentative parameter for the middle frame yt in the partition cell Qi

is then the average of all such parameters yt within the partition Qi

with the left and right context m and n respectively,

zmn
i =

1

Lmn
i

X

yt∈Qi
b(Q(yt−1))=m

b(Q(yt+1))=n

yt, (2)

which is dependent on the context m and n, where Lmn
i is the total

number of such parameters yt in the training set. Thus zmn
i is the

average of the parameters with the same context codewords. This
representative parameter zmn

i can be trained with a clean speech
corpus. In this way, context dependency among speech signals is
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automatically included in the quantization process. Note that assum-
ing there are N partition cells, for each partition cell there are now
N2 different representative parameters because there are N2 context
conditions (m, n ∈ {1, 2, . . . , N}). Therefore using the left and
right contexts allow for much finer representation of the parameters,
although the number of bits needed remains the same. Also, the
computational complexity and memory requirement on the client
side are the same as those for conventional quantization because the
number of partition cells is still N . This is shown in Fig. 1, in which
a partition cell has many representative parameters zm,n

i for different
contexts m and n, as compared to conventional quantization, in which
a partition cell has only a single representative parameter zi. Also,
in this scheme for a received codeword sequence, every codeword is
decoded considering its context codeword on both sides, and there
is no problem regarding the order of decoding. For example, for the
received codeword sequence, {w1, w2, w3, . . .}, w1w2w3 are used
to decode w2, w2w3w4 are used to decode w3, and so on.

The above context-dependent quantization can actually be ex-
tended to decode speech signals corrupted by noise as well. Assume
a noisy speech codeword sequence [b(Q(yt−1)) = m, b(Q(yt)) =
i, b(Q(yt+1)) = n] is observed, where yt−1, yt, yt+1 are all noisy
parameters, and assume that the correct codeword for the correspond-
ing clean speech parameter ŷt in the middle is b(Q(ŷt)) = k, where
ŷt is the clean speech version of yt, and the N possible values of the
codeword k has a distribution {P mn

i (k), k = 1, 2, . . . , N}. In other
words, P mn

i (k) is the probability of the correct codeword being
k (that is, b(Q(ŷt)) = k) when the observed noisy speech code-
word sequence is [b(Q(yt−1)) = m, b(Q(yt)) = i, b(Q(yt+1)) =
n]. These probabilities {P mn

i (k), k = 1, 2, . . . , N} can be eas-
ily estimated based on the frequency counts of such codeword se-
quences [b(Q(yt−1)) = m, b(Q(yt)) = i, b(Q(yt+1)) = n] and
[b(Q(yt−1)) = m, b(Q(ŷt)) = k, b(Q(yt+1)) = n] in a corpus
including corresponding noisy and clean speech for some noisy
conditions. With these probabilities, minimum mean squared error
(MMSE) estimation for the codewords for clean feature parameters
can be obtained as the conditional expectation values,

ẑmn
i = E[zmn

i | b(Q(yt−1))=m, b(Q(yt))= i, b(Q(yt+1))=n]

=
X

k

P mn
i (k)zmn

k , (3)

where zmn
i is the context-dependent representative parameter ob-

tained in Eq. 2, and ẑmn
i is the MMSE estimate of the representative

parameter from noisy codewords considering context dependency.

Note that the above formulation is for quantization under the DSR
framework, but it applies equally to feature transformation for robust
speech recognition apart from DSR, in which each original feature
parameter yt is transformed into zmn

i for recognition purposes based
on the quantization and its context.

All the above applies equally to all different quantization schemes.
Below we apply it to the recently-proposed Histogram-based Quanti-
zation (HQ) [5, 6, 7]. First we briefly review the concept of HQ, and
follow with context-dependent HQ.

2.2. Brief Review of Histogram-based Quantization

In Histogram-based Quantization (HQ) [5, 6, 7], the quantization of a
feature parameter yt at time t is based on the histogram of that feature
parameter within a moving segment of the most recent T samples,
[yt−T+1, . . . , yt−1, yt] � Yt,T , up to the time t under consideration.
As shown in Fig. 2, the values of these T parameters in Yt,T are
sorted to produce a time-varying cumulative distribution function

Fig. 1. Context-dependent quanti-
zation with left and right context
codewords m and n.

Fig. 2. Basic formulation
of Histogram-based Quantization
(HQ).

C(v), or histogram, which changes for every time instant t. The
N partition cells on the vertical scale [0, 1], {Di = [bi−1, bi], i =
1, 2, . . . , N} in Fig. 2, are derived from a standard Gaussian N(0, 1)
with cumulative distribution C0(v) via the Lloyd-Max algorithm.
These partition cells on the vertical scale, {Di, i = 1, 2, . . . , N}, are
then respectively transformed to the horizontal scale by the dynamic
histogram C(v) constructed with Yt,T , to be the N partition cells
{Qi = [vi−1, vi], i = 1, 2, . . . , N} on the horizontal scale for the
quantization of yt, where C(vi) = bi, i = 1, 2, . . . , N . The partition
cell Qi = [vi−1, vi] on the horizontal scale is dynamic and changes
for every time t via the dynamic histogram C(v). In contrast, the
representative parameters {z̄i, i = 1, 2, . . . , N} on the vertical scale
[0, 1] are fixed, derived from a standard Gaussian N(0, 1) via the
Lloyd-Max algorithm, and the representative parameters {zi, i =
1, 2, . . . , N} on the horizontal scale are transformed from {z̄i, i =
1, 2, . . . , N} on the vertical scale by the standard Gaussian histogram
C0(v); thus they are also fixed. This corresponds to the original HQ,
which can also be easily extended to its vector version HVQ [5].

2.3. Context-dependent HQ
In Eq. 2 the representative parameter zmn

i is determined given a set
of partition cells. However, for HQ the partition cells are dynamic
and varying for every time t; that is, every yt in Eq. 2 is associated
with a different set of partition cells. Fortunately, as in Fig. 2, we
see that even if the partition cells Qi for HQ are dynamic on the
horizontal scale, there are another set of partition cells Di on the
vertical scale which are fixed. The dynamic histogram C(v) defines
the relationship between the two sets of partition cells Qi and Di. As
a result, context-dependent HQ is easily achieved by performing Eq.
2 on the vertical scale, and then transforming it back to the horizontal
scale using the standard Gaussian histogram C0(v). In other words,
for context-dependent HQ we can have

z̄mn
i =

1

Lmn
i

X

yt∈Qi
b(Q(yt−1))=m

b(Q(yt+1))=n

C(yt) (4)

and
zmn

i = C−1
0 (z̄mn

i ). (5)

Thus the contextual information represented by zmn
i as obtained from

Equations 4 and 5 is very similar to that of Eq. 2.
The context dependency relationships for HQ as analyzed above

can then be similarly extended as in Eq. 3 to estimate the representa-
tive parameters ẑmn

i from noisy codewords. Here, zmn
i obtained from

Eq. 5 can be used with the probabilities {P mn
i (k), k = 1, 2, . . . , N}

estimated from corresponding clean/noisy corpus for MMSE estima-
tion as in Eq. 3.
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Fig. 3. Word accuracies for HEQ, HQ, HQ-cd and HQ-mmse under
clean condition training: (a) averaged over all SNR values (20 dB
to 0 dB) but separated for different types of noise; (b) averaged over
all types of noise but separated for different SNR values; and (c)
averaged over all types of noise and all SNR values (20 dB to 0 dB)
for different testing sets.

3. EXPERIMENTAL CONDITIONS
All experiments reported below were conducted on the AURORA 2
testing environment [8] based on a corpus of English connected digit
strings. Two training conditions (clean and multi-condition) and three
testing sets (sets A, B, and C) were defined in AURORA 2. Each
training set consists of 8440 utterance and each testing subsets (for
each noise type and each SNR condition) consists of 1001 utterance.
The MFCC extraction, HMM settings and HTK-based training and
testing procedures follow the Aurora 2 specifications [8]. The multi-
condition training set and the corresponding clean speech training set
were used to estimate the probabilities {P mn

i (k)} used in Eq. 3.
General Packet Radio Service (GPRS) was chosen as an example

of wireless channels in these experiments; GPRS was developed
by ETSI based on a packet switching framework to enhance the
GSM system. GPRS includes four different error control coding
schemes, CS1-CS4, each with a different code rate. Developed by the
National Taiwan University’s Wireless Communication Laboratory,
the GPRS simulation software [9] used in the tests described here
carefully simulated all complicated transmission phenomena, such as
the propagation model, multi-path fading, Doppler spread, and so on.
The experimental results presented below are based on the following
simulation configurations: typical urban (TU, an environment more
frequently encountered with a more severe fading problem), the client
traveling at speeds of 3 km/hr, single antenna, hard decision at the
receiver, and CS4 (i.e., without any protection) coding scheme, which
corresponds to a transmission bit error rate of 5.3%.

4. EXPERIMENTAL RESULTS

4.1. Context-dependent HQ as a Robust Feature Transforma-
tion Method
In the first set of experiments, we considered the case of robust
speech recognition apart from the DSR environment, in which context-
dependent HQ was used as a feature transformation technique, that
is, each feature parameter yt, either clean or disturbed by noise, is
transformed to the representative parameter zmn

i in Eq. 5 or ẑmn
i in

Fig. 4. Comparison of HEQ-SVQ, HQ, and HQ-mmse, and those
with GPRS transmission errors (HEQ-SVQg, HQg, and HQ-mmseg):
(a) averaged over all SNR values (20 dB to 0 dB) but separated for
different types of noise; (b) averaged over all types of noise but
separated for different SNR values; and (c) averaged over all types of
noise and all SNR values (20 dB to 0 dB) for different testing sets.

SNR Clean 20 dB 15 dB 10 dB 5 dB 0 dB

TC 98.31 95.16 89.55 70.94 43.79 18.75

HQ-mmse 98.37 96.05 93.66 88.71 78.24 56.80

TCg 93.84 84.35 73.55 52.38 27.81 9.29

HQ-mmseg 97.20 93.99 91.09 84.77 72.51 49.60

Table 1. Comparison of Transform coding (TC) and HQ-mmse,
without and with GPRS transmission errors (TCg and HQ-mmseg)
for different SNR values.

Eq. 3, for the corresponding partition cell considering the context
codewords m, n, to be used for recognition.

The results in Fig. 3 were all under clean-condition training,
organized in three parts: (a) averaged over all SNR values (20 dB
to 0 dB) but separated for different types of noise, (b) averaged over
all types of noise but separated for different SNR values, and (c)
averaged over all types of noise and all SNR values (20 dB to 0 dB)
for testing sets A, B, and C, respectively. The first two bars in each set
in Fig. 3 are respectively the recognition word accuracies for the well-
known histogram equalization (HEQ) alone [10, 11], and the original
HQ [5, 6, 7], which transforms each feature parameter yt to the HQ
representative value zi without considering the context codewords.
The next two bars are then those for context-dependent HQ, using
context-dependency trained from a clean speech corpus with Eq. 5 for
the third bar (HQ-cd) and using MMSE estimates trained with a multi-
condition training corpus with Eq. 3 for the last bar (HQ-mmse). All
the experiments reported here for HQ were based on order-statistics
over segments of the most recent parameter values as mentioned in
section 2.2, so there was no time delay. Although better results were
obtainable if the no-delay condition was removed, they are not shown
here due to space limitations. Here HEQ was performed in exactly
the same way as HQ, based on a moving segment of the most recent
T parameters, and the same value of T = 100 was used.

It can be found that HQ (2nd bar) consistently outperformed
HEQ (1st bar) (this was verified earlier [6]), while context-dependent
HQ (both HQ-cd and HQ-mmse in the 3rd and 4th bars) consistently
and significantly outperformed HEQ: in particular MMSE estimation
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trained with a noisy corpus (4th bar) resulted in much more robust
features for recognition. Increasing improvements are apparent in Fig.
3 in all cases. In addition, context-dependent HQ trained with clean
speech (HQ-cd, 3rd bar) offered greater improvement than original
HQ (HQ, 2nd bar) for speech-like noise such as babble, restaurant,
and airport, probably because the context-dependent characteristics
for these types of noise have been more or less included in the transfor-
mation. Furthermore, HQ-mmse (4th bar) consistently outperforms
HQ-cd (3rd bar) (Fig. 3(c)), which verifies that the context depen-
dency trained from noisy corpora is useful even for unseen noisy
environments (e.g. sets B and C).

4.2. Context-dependent HQ as a Feature Quantization Method
for DSR

We next considered context-dependent HQ as a feature quantization
method in DSR. In Fig. 4 in each set the first three bars are respec-
tively the word accuracies for the well-known HEQ followed by the
conventional SVQ (HEQ-SVQ), original HQ (the same as the 2nd
bar in Fig. 3), and context-dependent HQ with MMSE estimation
(HQ-mmse, the same as the 4th bar in Fig. 3), all at 4.4 kbps with-
out transmission errors, and the next three bars (HEQ-SVQg, HQ-g,
HQ-mmseg: the label ”g” indicates GPRS) are those suffering from
GPRS transmission errors for a client traveling at 3 km/hr. Fig. 4
(a) is averaged over all SNR values (20 dB to 0 dB) but separated for
different types of noise, (b) is averaged over all types of noise but
separated for different SNR values, and (c) is averaged over all types
of noise and all SNR values (20 dB to 0 dB) for testing sets A, B, and
C, respectively.

We first examined the effect of quantization and compression on
recognition accuracy, assuming there were no transmission errors.
The performance of original HQ (2nd bar) consistently outperformed
HEQ-SVQ (this was also shown previously [6]), while HQ-mmse
(3rd bar) was consistently and significantly better than original HQ,
as shown in Fig. 4(a)-(c). This verifies the effectiveness of context-
dependency. Improvements were even more significant for lower SNR
cases (Fig. 4(b)), and for several types of non-stationary noise (Fig.
4(a)), which indicates where context-dependency is more helpful. We
then examined the effect of transmission errors in the last three bars
in Fig. 4. For HEQ-SVQ, the performance degradation caused by
GPRS (4th bar compared to 1st bar) is more serious for lower SNRs.
Clearly, features corrupted by noise are more susceptible to transmis-
sion errors. The improvements that HQ and context-dependent HQ
offered over HEQ-SVQ when transmission errors were present (5th,
6th bars to 4th bar) are consistent and very significant. For example,
in the case of 10 dB SNR with GPRS, HQ-mmseg (6th bar) offered
an accuracy of 84.77% compared to 69.84% for HEQ-SVQg (4th
bar). In addition, it is interesting that the improvements offered by
HQ-mmse over HQ when transmission errors were present (6th bar to
5th bar) are much more significant as compared to those comparison
without transmission errors (3rd bar to 2nd bar). This indicates that
context-dependency among speech codewords is actually very strong,
and remains helpful even after heavy disturbance due to environmen-
tal noise and transmission errors, and the error propagation problem
is not serious here. This is probably because even if there are erro-
neous context codewords, they may only change the representative
parameter zmn

i of the current frame within the same partition cell Qi

in Fig. 1, which is actually very limited. Also, the decoding here
used only local context codewords, i.e., based on the two neighboring
undecoded codewords only; thus erroneous codewords actually do
not propagate. It is clear from Fig. 4 that HQ-mmse is robust against
both environmental noise and transmission errors.

Also shown in Table 1 are the detailed word accuracies of trans-
form coding (TC) [4] compared with HQ-mmse, either without or
with GPRS transmission errors for all SNR values, average over all
noise types. The performance of TC seriously degrades when trans-
mission errors are present (3rd row vs. 1st row), probably because
exploiting speech correlation by grouping several consecutive frames
into one block and quantizing them together may be sensitive to trans-
mission errors. In contrast, error propagation is not a serious problem
here for HQ-mmseg (the performance degradation is much smaller
for the comparison of 4th and 2nd rows).

5. CONCLUSIONS

We have proposed context-dependent quantization, a new concept
for distributed and/or robust speech recognition. Improved recogni-
tion performance was obtained consistently across a wide range of
environmental noise and transmission error conditions.
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