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ABSTRACT
In this paper a Switching Linear Dynamical Model (SLDM)
approach for speech feature enhancement is improved by em-
ploying more accurate models for the dynamics of speech and
noise. The model of the clean speech feature trajectory is
improved by augmenting the state vector to capture informa-
tion derived from the delta features. Further a hidden noise
state variable is introduced to obtain a more elaborated model
for the noise dynamics. Approximate Bayesian inference in
the SLDM is carried out by a bank of Extended Kalman l-
ters, whose outputs are combined according to the a posteriori
probability of the individual state models. Experimental re-
sults on the AURORA2 database show improved recognition
accuracy.

Index Terms— ASR, speech recognition, speech feature
enhancement, inter-frame correlation, SLDM

1. INTRODUCTION

Recently, state-space estimation techniques have been pro-
posed for speech feature enhancement for noisy speech recog-
nition [1], [2], [3], [4], [5]. However, the use of state estima-
tion techniques faces two major dif culties: First, the clean
speech trajectory cannot be well modelled by a single linear
dynamical model; and second, the observation model, which
relates the observed noisy speech to the clean speech feature
vector, is highly non-linear.

A promising approach to tackle the rst issue is the use of
switching linear dynamical models (SLDM), where the fea-
ture trajectory is described by a number of linear models,
and a so-called regime variable (a ”switch”) determines which
model is active at a given time [1]. Recently, inference in this
model has been improved by feeding back information from
the speech recognizer to estimate the value of the regime vari-
able [5].

To address the second issue, a variety of observation mod-
els has been proposed in the literature [2], [6], [7], [8], [9]. In
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the context of SLDMs, a method based on an iterative im-
provement of a SNR variable and linear and statistical lin-
earizations in the context of Extended and Unscented Kalman
Filters have been proposed.

In this paper we present an improved state dynamics and
observation model, which is based on exploiting the informa-
tion present in rst and second order dynamical feature vector
components. To arrive at a tractable solution, Principal Com-
ponent Analysis is applied to capture this information in a few
additional components of the state vector. A novel dynamical
model of the noise is also introduced.

The paper is organized as follows. In the next section
the concept of SLDM-based speech feature enhancement is
brie y summarized, where a VTS-based linearisation of the
observation model leads to a bank of Extended Kalman Fil-
ters. In Section 3 the improved dynamical model is presented.
A novel state-space model of the noise is introduced in Sec-
tion 4, and Section 5 gives experimental results. The paper
nishes with conclusions drawn in Section 6.

2. SPEECH FEATURE ENHANCEMENT WITH
SLDMS

Let xt denote the clean cepstral feature vector consisting of
13 static components. Its dynamics are modeled by a SLDM
according to the state equation

xt = A(st)xt−1 + b(st) + ut,ut ∼ N (0,C(st)) (1)

where A(st), b(st) and C(st) are learnt with the EM algo-
rithm from clean speech training data. Here, st ∈ {1, . . . , M}
is a state or regime variable which can assume M different
values. During inference it has to be estimated alongside xt.

In order to take into account the time-varying characteris-
tics of the background noise we also adopt a state space model
of the (cepstral) noise process:

nt = Dnt−1 + e + vt,vt ∼ N (0,F) (2)

with noise state transition matrix D, bias e and system noise
vt. We will discuss different options for this noise model in
Section 4.
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The observation model, which relates the clean speech xt

and noise nt to the noisy speech cepstral feature vector yt is
non-linear:

yt = h(xt,nt) = xt +MDCT log(1+eM−1
DCT (nt−xt)). (3)

Here, MDCT and M−1
DCT denote the matrix of the Discrete

Cosine Transfom and its (pseudo-) inverse, respectively. The
functions log and e have to be understood to operate elemen-
twise on their arguments.

Eq. (3) can be linearized by Vector Taylor Series expan-
sion around given vector points x(0)

t and n(0)
t , leading to

yt ≈ h(x(0)
t ,n(0)

t ) + Hx(xt − x(0)
t ) + Hn(nt − n(0)

t ) + wt

(4)
with wt ∼ N(0,V), I denoting the identity matrix, and the
Jacobians

Hx = MDCT
eM−1

DCT x
(0)
t

eM−1
DCT x

(0)
t + eM−1

DCT n
(0)
t

M−1
DCT ,Hn = I−Hx

(5)
Employing this linearization around the moments of the a pri-
ori distributions an Extended Kalman Filter can be applied for
lter update of each of the M models. Let zt = (xT

t ,nT
t )T

denote the combined state vector of speech and noise. Then
the equations of the Extended Kalman Filter can be compactly
written as follows:

zt|t−1(st) = Az(st)zt−1|t−1 + bz(st)
Pt|t−1(st) = Az(st)Pt−1|t−1 + Cz(st)

Kt(st) = Pt|t−1(st)HT
z (HzPt|t−1(st)HT

z + V)−1

zt|t(st) = zt|t−1(st) + Kt(st)(yt − h(zt|t−1(st)))
Pt|t(st) = (I − Kt(st)Hz)Pt|t−1(st)

(6)

with

Az(st) =
[
A(st) 0

0 D

]
, bz(st) =

[
b(st)

e

]
,

Cz(st) =
[
C(st) 0

0 E

]
, Hz =

[
Hx Hn

] (7)

and the Kalman gain Kt(st). The variables zt|t(st), Pt|t(st),
zt|t−1(st) and Pt|t−1(st) are the moments of the state-
conditional probability density functions

p(zt|yt−1
1 , st) = N (zt|t−1(st),Pt|t−1(st))

p(zt|yt
1, st) = N (zt|t(st),Pt|t(st)).

(8)

of the state vector zt at frame t, given all past observations up
to frame t − 1 or t, respectively. The estimation of the over-
all posterior p(zt|yt

1) is computationally intractable, how-
ever suboptimal solutions can be obtained by the Generalized
Pseudo-Bayesian (GPB) or the Interacting Multiple Model
(IMM) algorithm.

3. INCORPORATION OF THE DYNAMIC
FEATURES

In HMM-based speech recognition dynamic features are usu-
ally incorporated in the feature vector in order to partly com-
pensate for the modeling errors introduced by the conditional
independence assumption, which states that dependence be-
tween successive feature vectors is captured solely by the
HMM states. Indeed, dynamic features have been shown to
signi cantly improve recognition accuracy. They are usually
computed over several frames and can therefore capture de-
pendencies beyond what a rst-order Markov model can do.
In this section an approach is introduced where the dynamic
features are incorporated ef ciently in the Extended Kalman
Filter in order to obtain a robust model of the speech dynam-
ics.

The state vector (x,n) of the Extended Kalman Filter
is expanded to the vector (x, δx, δ2x,n, δn, δ2n) while the
measurement vector y is replaced by the vector (y, δy, δ2y).
Here, δ and δ2 shall indicate rst- (velocity) and second-order
(acceleration) time derivatives of the respective feature. An
approximative measurement model for the dynamic features
in the log-spectral domain has been derived in [10]:

δỹ ≈ ex̃

ex̃ + eñ
δx̃ +

eñ

ex̃ + eñ
δñ

δ2ỹ ≈ ex̃

ex̃ + eñ
δ2x̃ +

eñ

ex̃ + eñ
δ2ñ

+
e(x̃+ñ)

(ex̃ + eñ)2
[(δx̃)2 + (δñ)2 − 2δx̃δñ]

(9)

Here, x̃, ñ and ỹ are the log-spectral feature vectors of
speech, noise and noisy speech. Vector Taylor Series expan-
sion in the Cepstrum leads to the approximative measurement
model

⎡
⎣ y

δy
δ2y

⎤
⎦ =

⎡
⎣h(x(0),n(0))

0
0

⎤
⎦ + H

⎡
⎢⎢⎢⎢⎢⎢⎣

x− x(0)

δx− δx(0)

δ2x− δ2x(0)

n− n(0)

δn− δn(0)

δ2n− δ2n(0)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎣ w

δw
δ2w

⎤
⎦

(10)
with the Jacobian

H =

⎡
⎣Hx 0 0 Hn 0 0
H21 Hx 0 H24 Hn 0
H31 H32 Hx H34 H35 Hn

⎤
⎦ , (11)

The matrices Hij denote the Jacobians from the i-th subvec-
tor of the observation to the j-th subvector of the state vector;
e.g. H32 = ∂(δ2y)/∂(δx).

The matrices H21, H31, H32, H24, H34 and H35 are ap-
proximated by zero for the following considerations. Note
that the state vectors (x, δx, δ2x) and (n, δn, δ2n) contain 39
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components each. Such a high dimension makes the calcula-
tions in the Extended Kalman lters very time consuming and
bares the danger that the training of the state matrices is sus-
ceptible to irregularities in the training data. For this reason
the subvector (δx, δ2x) is mapped into a lower-dimensional
space by Principal Component Analysis (PCA):

δx = MPCA

[
δx
δ2x

]
, (12)

with dimension dim(δx) ≤ dim((δx, δ2x)). The subvectors
(δy, δ2y) and (δn, δ2n) are likewise reduced to δy and δn.
The PCA matrix MPCA is determined from clean speech
training data. The observation model for the modi ed state
and observation vector can be written as

[
y
δy

]
=

[
h(x(0),n(0))

0

]
+ H̃

⎡
⎢⎢⎣

x − x(0)

δx − δx
(0)

n− n(0)

δn − δn
(0)

⎤
⎥⎥⎦ +

[
w
δw

]
, (13)

with

H̃ =
[
I 0
0 MPCA

]
H

[
I 0
0 M−1

PCA

]
(14)

where M−1
PCA denotes the right-inverse matrix of MPCA.

Correspondingly, the state model is extended to
[
xt+1

δxt+1

]
= Ã

[
xt

δxt

]
+ b̃ + ũt, ũt ∼ N (0, C̃(st)) (15)

where the parameters Ã(st), b̃(st) and C̃(st) are learned in
the same manner as described in [1] from training data by
application of an EM algorithm.

4. MODELLING THE NOISE DYNAMICS

In the framework of the SLDM described in Section 2 sta-
tionary noise conditions can be modeled by setting D = 0,
e = μn, and F equal to the covariance matrix of the noise
in eq. (2). Mean μn and covariance of the cepstral noise
can be estimated from the rst and last frames in the sen-
tence, which are assumed to contain noise only [1] [3]. This
model can be extended to capture non-stationary noise by let-
ting D �= 0 resulting in a state space model of noise dynamics
which captures inter-frame correlations of the noise process
[2] [4]. While in [4] the state model for the noise dynamics
according to eq. (2) is employed, Kim et al. [2] used the
simpli ed noise model:

nt = nt−1 + vt,vt ∼ N(0, ε). (16)

where ε was a priori xed so that no training data was re-
quired. In both approaches it was assumed that during ab-
sence of speech the noise process nt is observable.

In practice, the observed noise process is highly uctuat-
ing. If the model (2) or (16) were used, this uctuation would

have to be attributed completely to the non-stationarity of the
noise. The uctuation, however, is not necessarily due to non-
stationarity, but, probably to a greater extent, due to the obser-
vation process (e.g. variance of the periodogram estimation).
Therefore it seems to be reasonable to use a state model for
a hidden noise variable corresponding to the time-varying ex-
pectation value of the nonstationary noise and to relate the
remainder of the uncertainty to an observation process:

n′t = n′t−1 + vt (17)

nt = n′t + w(n)
t (18)

with vt ∼ N (0, ε′) and w(n)
t ∼ N (0,V(n)).

The state equation (17) results from eq. (2) by setting

D = I, e = 0, F = ε′ (19)

while the variance V of the measurement noise in eq. (4) is
increased by

HnV(n)HT
n . (20)

to account for the observation noise in (18).
In order to take the unreliability of the noise measurement

during active speech into account a VAD is applied to reset
p(n′t|yt

1, st) to the prior p(n′t|yt−1
1 , st) after the measurement

update in speech phases.
The crucial part in the parameter estimation is the deter-

mination of the state model variance ε′ which is assumed to
be a very small constant. For this purpose a Minimum Statis-
tics approach in the Cepstrum is applied. A window of length
N (win) with the center position position P

(win)
t is slided over

the data. n′t is estimated to be the minimum of the cepstral
values in the window around P

(win)
t , leading to the estimate

ε′ ≈ E[(n′t − n′t−1)(n
′
t − n′t−1)

T ]. (21)

In order to determine V(n) it is assumed that the noise is ap-
proximately stationary in the rst and last noise-only frames
of a sentence, such that the variance can be estimated to be

V(n) =
Nstart

Nstart + Nend
Σn

(start) +
Nend

Nstart + Nend
Σn

(end),

(22)
where the noise covariances Σn

(start) and Σn
(end) are ob-

tained from the rst Nstart and the last Nend noise-only
frames in the sentence respectively.

5. EXPERIMENTAL RESULTS

The experiments were performed on the AURORA2 database
with clean speech training data. We modi ed the ETSI stan-
dard front-end extraction in the same manner as in [1] by
replacing the energy feature with c0 and using the squared
power spectral density rather than the spectral magnitude as
the input of the Mel-frequency lter-bank. The overall recog-
nition accuracy was averaged over all noise conditions at
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SNR levels between 0dB and 20dB. The speech recognition
with the described standard frontend (SFE) yielded an overall
recognition accuracy of 60.37% on test set A and 56.37% on
test set B (table 1).

Set A Subw. Bab. Car Exh. Avg.

SFE 68.06 45.87 58.34 64.76 60.37
SLDM 80.19 72.56 84.28 82.43 79.87
SLDM2 80.16 70.57 86.38 82.33 79.86
SLDM2-d 82.31 74.49 87.24 82.81 81.71
SLDM2-d2 81.51 73.32 86.82 82.17 80.95
SLDM2-dn 82.07 75.90 86.90 83.12 82.00

Set B Rest. Street Airp. Train Avg.

SFE 52.07 65.50 52.72 55.19 56.37
SLDM 74.39 79.29 79.05 83.91 79.16
SLDM2 76.57 75.92 80.82 81.37 78.67
SLDM2-d 75.74 80.73 80.88 83.90 80.31
SLDM2-dn 76.27 79.57 82.04 83.57 80.36

Table 1. Word accuracy on the AURORA 2 database at dif-
ferent noise conditions

The SLDM proposed in [1] led to an accuracy of 79.87%
and 79.16% respectively. With the SLDM described in Sec-
tion 2 (SLDM2) approximately the same overall accuracy
was achieved, while the computational costs were slightly re-
duced, as there was no iterative estimation of an SNR vari-
able involved. By augmenting the state vector of clean speech
by a single additional component, which captures information
from the delta features according to the method described in
Section 3, the recognition accuracy was improved to 81.71%
and 80.31% respectively (SLDM-d). Using one more feature,
i.e. dim(δx) = 2 (SLDM2-d2), part of the improvement was
lost again on set A so that no further experiments on set B
were conducted. In control experiments (not reported in the
table) we observed the same gain of about 2% on test set A
when using the iterative Extended Kalman lter proposed in
[7] or when carrying out smoothing, i.e. estimating the pos-
terior p(zt|yT

1 ), which is conditioned on all frames of an ut-
terance, rather than p(zt|yt

1), by employing the Rauch-Tung-
Striebel algorithm. However, these two methods are compu-
tationally more expensive than the one proposed here. Unfor-
tunately the gains of the individual methods did not add up
when used in combination.

With the dynamic noise model (SLDM-dn) the recogni-
tion accuracy is improved for instationary noise conditions
(e.g. Babble, Exhibition)while it is decreased at more station-
ary noise conditions (e.g. Subway, Car). In all experiments
the parameters of the different noise models were estimated
from the rst and last 10 frames of each sentence.

6. CONCLUSIONS AND OUTLOOK

In this paper SLDM-based speech feature enhancement with
a bank of Extended Kalman Filters was investigated. The
recognition results could be signi cantly improved by incor-
porating a single dynamic feature in the state model of clean
speech. Further improvements for instationary noise condi-
tions were achieved by employing a state model for the noise
dynamics which incorporates a hidden, unobservable state
variable. Currently we are working on improving the state
model of noise by estimating the model parameters with the
EM algorithm.
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