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ABSTRACT

In this paper, we propose a novel approach to feature com-

pensation performed in the cepstral domain. We apply the

linear approximation method in the cepstral domain to sim-

plify the relationship among clean speech, noise and noisy

speech. Conventional log-spectral domain feature compensa-

tion methods usually assume that each log-spectral coefficient

is independent, which is far from real observations. Process-

ing in the cepstral domain has the advantage that the spectral

correlation among different frequencies are taken into con-

sideration. By using the diagonal covariance approximation,

we can easily modify the conventional log-spectral domain

feature compensation technique to fit to the cepstral domain.

The proposed approach shows significant improvements in

the AURORA2 speech recognition task.

Index Terms— Feature compensation, cepstral domain,

diagonal approximation.

1. INTRODUCTION

It is generally known that the performance of speech recogni-

tion systems deteriorates in the presence of background noise.

One of the successful approaches to alleviate this type of per-

formance degradation is the feature compensation technique

in which noisy input features are compensated before being

decoded through the acoustic recognition models that were

trained on clean speech. Even though a feature compensation

algorithm can be designed without any prior knowledge of

clean speech, it has been proven beneficial to employ a spe-

cific distribution model trained on an amount of clean speech

data.

The cepstrum is one of the predominant feature para-

meters for the state-of-the-art speech recognition systems

because the cepstrum describes the characteristics of speech

signals very compactly [1]. But there are a lot of complex

processes for extracting cepstra from the input speech signals

including nonlinear transforms such as the Mel-scale filter-

bank and log transform, and matrix operation such as the

inverse Fourier transform. For that reason, it is difficult to

describe explicitly how the input speech cepstrum is affected

by the cepstra of the clean speech and noise.

So far, most of the feature compensation techniques have

been performed in the log-spectral domain to avoid the mathe-

matical complication in the cepstral domain [2]-[5]. However,

there are some disadvantages in compensating noisy features

in the log-spectral domain. One of them is that the log spectra

need to be transformed into the corresponding cepstra by the

discrete cosine transform (DCT). Through DCT, the estima-

tion error in the log-spectral domain transfers into the cepstral

domain and makes unknown artifacts which result in recog-

nition performance degradation. Even though we try to make

the error minimized in the log-spectral domain, this does not

indicate the minimization of the error in the cepstral coeffi-

cients. In practice, all the log-spectral domain coefficients

are strongly correlated. However, in most of the feature com-

pensation techniques, we usually assume that the log-spectral

coefficients are independent of each other in order to simplify

the computational model, which may deteriorate the perfor-

mance. On the other hand in the cepstral domain, since there

is very weak correlation among different coefficients, the in-

dependence assumption can be more realistic. Therefore, to

achieve a better performance in speech recognition, we should

compensate the cepstral coefficients directly. Another disad-

vantage is the higher dimensionality of the log-spectrum com-

pared with the number of cepstral coefficients. Higher dimen-

sion costs more computation.

In this paper, we propose a new feature compensation

technique performed in the cepstral domain. We present lin-

ear approximate method in the cepstral domain which enables

us to easily adopt the conventional log-spectral domain fea-

ture compensation methods in the cepstral domain. From

a number of speech recognition experiments on AURORA2

database under the condition of clean training, we have been

able to find that the proposed approach improves the perfor-

mance of the original interacting multiple model (IMM) tech-

nique, which is carried out in the log-spectral domain.

44011-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



2. LINEAR APPROXIMATION IN THE CEPSTRAL
DOMAIN

In this section, let us consider how to approximate the speech

corruption model in the cepstral domain. Let sl
j , nl

j and zl
j

denote the jth log Mel-scale filter output of the clean speech,

background noise and noisy speech, respectively, and j =
1, 2, ..., N . The superscript “l” denotes that the relevant com-

ponents are defined in the log spectral domain. Then, their

relation is described as

zl
j = log

(
exp(sl

j) + exp(nl
j)

)
. (1)

We can obtain the speech corruption model in the cepstral

domain by applying the discrete cosine transform (DCT) to

(1) as follows:

zi =
N∑

j=1

dij log
(
exp(sl

j) + exp(nl
j)

)

=
N∑

j=1

dij log

(
exp

(
N∑

k=1

ejksk

)
+ exp

(
N∑

k=1

ejknk

))

(2)

where dij and eij denote the (i, j)th element of the N × N
DCT matrix and the inverse DCT matrix, respectively. In (2),

si, ni and zi denote the ith cepstral coefficients of the clean

speech, background noise and noisy speech, respectively. It

should be noted that zi is related not only to the ith cepstral

coefficients of the clean speech and the background noise but

also to the other order coefficients. To compensate the ith
cepstral coefficient of the noisy speech, we should consider

every order of the cepstral coefficients of the clean speech

and noise. This property makes it practically difficult to apply

the feature compensation method to the cepstral coefficients

directly.

In order to make the nonlinear relationship among zi, {sj ,

nj ; j = 1, 2, . . . , N }, which is shown in (2), a tractable one,

zi is approximated by a linear model. Because zi is a function

of 2N scalar variables {sj , nj}, it can be approximated by a

linear model given by

zi ≈
N∑

j=1

Ac
ij(sj − s0,j) +

N∑
j=1

Bc
ij(nj − n0,j) + Cc

i (3)

where { s0,j , n0,j } are some fixed constants introduced for

the convenience of formulation and { Ac
ij , Bc

ij , Cc
i } are

the constants which should be appropriately chosen. There

are some methods for linear approximation such as the vec-

tor Taylor series (VTS) and statistical linear approximation

(SLA) [6]. We apply the SLA method in this section because

of its superior performance.

When we use the first order SLA, { Ac
ij , Bc

ij , Cc
ij } are

given as follows [6]:

Ac
ij =

∂zi

∂sj

∣∣∣∣
sj=s0,j , nj=n0,j

Bc
ij =

∂zi

∂nj

∣∣∣∣
sj=s0,j , nj=n0,j

Cc
i = zi|sj=s0,j , nj=n0,j

(4)

After some algebra using (2) and (4), it can be shown that

Ac
ij =

N∑
l=1

dil

exp
(∑N

k=1 ejks0,k

)
exp

(∑N
k=1 elks0,k

)
+ exp

(∑N
k=1 elkn0,k

)elj

Bc
ij =

N∑
l=1

dil

exp
(∑N

k=1 elkn0,k

)
exp

(∑N
k=1 elks0,k

)
+ exp

(∑N
k=1 elkn0,k

)elj

Cc
i =

N∑
l=1

dil log

(
exp

(
N∑

k=1

elks0,k

)
+ exp

(
N∑

k=1

elkn0,k

))
.

(5)

We assume that the cepstral coefficients follow some correla-

tion structure given as follows:

COV (si, sj) = 0, for i �= j

COV (ni, nj) = 0, for i �= j

COV (si, nj) = 0, for all i, j (6)

where COV (a, b) means the covariance between the random

variables, a and b.

In the case of using the second order SLA, Ac
ij and Bc

ij

are defined in the same way to (4) while Cc
ij is now modified

to

Cc
i = zi|sj=s0,j , nj=n0,j

+
1
2

∂2zi

∂s2
j

∣∣∣∣∣
sj=s0,j , nj=n0,j

· V AR(sj)

+
1
2

∂2zi

∂n2
j

∣∣∣∣∣
sj=s0,j , nj=n0,j

· V AR(nj) (7)

where V AR(a) is the variance of the random variable a.

From (2) and (7), we can obtain the linearization parame-

4402



ters for the second order SLA as follows:

Ac
ij =

N∑
l=1

dil

exp
(∑N

k=1 elks0,k

)
exp

(∑N
k=1 elks0,k

)
+ exp

(∑N
k=1 elkn0,k

)elj

Bc
ij =

N∑
l=1

dil

exp
(∑N

k=1 elkn0,k

)
exp

(∑N
k=1 elks0,k

)
+ exp

(∑N
k=1 elkn0,k

)elj

Cc
i =

N∑
l=1

dil log

(
exp

(
N∑

k=1

elks0,k

)
+ exp

(
N∑

k=1

elkn0,k

))

+
1
2

N∑
l=1

⎡
⎢⎣ N∑

j=1

dij
eΣN

k=1ejks0,keΣN
k=1ejkn0,k(

eΣN
k=1ejks0,k + eΣN

k=1ejkn0,k

)2 e2
jl

⎤
⎥⎦

· [V AR(sl) + V AR(nl)] . (8)

To apply (8) to the IMM feature compensation algorithm

[5], we describe (3) in a vector-matrix form as follows:

z ≈ f(s,n) = Ac(s − s0) + Bc(n − n0) + Cc (9)

where z = [z1z2 . . . zN ]′, s = [s1s2...sN ]′ and n =
[n1, n2, ..., nN ]′. In (9), Ac and Bc are matrices composed

of {Ac
ij} and {Bc

ij}, respectively, and Cc denotes a vector

of [Cc
1C

c
2 . . . Cc

N ]′. As mentioned before, Ac and Bc are

N × N dimensional full matrices. This is not desirable for

feature compensation using the IMM approach where inver-

sion of the matrices Ac and Bc are needed to estimate the

clean speech feature [5] and N , which is between twenty to

twenty three conventionally, is large enough to make a heavy

computation. Therefore it is necessary to make the matrices

Ac and Bc structured in a simpler form.

3. DIAGONAL MATRIX APPROXIMATION

In this section, we propose a linear approximation model

whose linear coefficients are diagonal matrices. Let { A, B,

C } be linearizing coefficients. Then the speech corruption

model in the cepstral domain can be described such that

z ≈ g(s,n) = A(s − s0) + B(n − n0) + C . (10)

Our purpose is to minimize the approximation error

e2 = E
[
(g(s,n) − f(s,n))2

]

=
N∑

i=1

e2
i (11)

where

e2
i = E

[(( N∑
j=1

Ac
ij(sj − s0,j) +

N∑
j=1

Bc
ij(nj − n0,j) + Cc

i

)

− (Ai(si − s0,i) + Bi(ni − n0,i) + Ci)
)2

]

(12)

and Ai and Bi denote (i, i)th coefficient of the diagonal ma-

trices A and B. We can minimize the approximation error

(11) by minimizing each ith order component e2
i in (12).

From (12) and (6), we can straightforwardly obtain

Ai = Ac
ii

Bi = Bc
ii

Ci = Cc
ii . (13)

Using (13), we can establish the cepstral domain IMM algo-

rithm in the same way as the conventional log-spectral do-

main one [5]. Since Ac and Bc are diagonal, each cepstral

coefficient can be compensated independently.

4. EXPERIMENTAL RESULTS

Performance of the cepstral domain IMM (IMM-CEP) al-

gorithm was evaluated on the AURORA2 database which

consists of the TI-DIGITS data down-sampled to 8 kHz [7].

The AURORA2 database is regarded as the clean speech data

and it has been artificially contaminated by adding the noises

recorded under several conditions. Three sets of speech data-

base were prepared for the recognition experiments. In test

set A, the four noises (subway, babble, car and exhibition

hall) were added to the clean data at SNR’s of 20 dB, 15 dB,

10 dB, 5 dB, 0 dB and -5 dB. In test set B, another four dif-

ferent noises (restaurant, street, airport and train station) were

added to the clean data at the same SNR’s. Finally in test set

C, two of the noises from set A and set B (subway and street)

were added to the clean data and there also existed a channel

mismatch. Results are presented as an average performance

in five SNR conditions from 20dB to 0dB.

Feature compensation was performed in the cepstral do-

main. In the IMM-CEP algorithm, clean speech cepstra were

modeled by a mixture of 128 Gaussian distributions with di-

agonal covariance matrices.

We assumed that cepstral coefficients are independent. To

verify this, calculating the covariance of the cepstra of clean

training speech in AURORA2 database was performed, and a

part of the obtained result is shown in Table 1. Table 1 rep-

resents the normalized covariance of the fifth cepstral coeffi-

cient with the other coefficients. It is clear that each cepstral

coefficient is almost completely uncorrelated with the other

coefficients. Therefore the assumption that the cepstrum is

independent of each other is validated.
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Table 1. Normalized covariances between fifth cepstrum (c5)

and other cepstra.

c1 c2 c3 c4 c5 c6 c7

0.08 0.10 -0.16 -0.02 1.00 -0.06 -0.00

Table 2. Word accuracies(%) over AURORA2 database for

clean training condition (relative improvements(%) compared

to the baseline system).

SNR set A set B set C Avg.

20 dB 94.84 92.45 96.00 94.11

15 dB 88.08 82.74 92.10 86.75

Baseline 10 dB 71.01 62.84 81.40 69.82

5 dB 43.81 34.64 39.54 43.29

0 dB 19.79 14.29 30.08 19.64

Avg. 63.50 57.39 71.82 62.72
20 dB 97.30 96.99 96.27 96.97

15 dB 95.23 95.05 93.09 94.73

IMM 10 dB 90.37 90.24 86.16 89.47

5 dB 80.06 78.99 72.98 78.21

0 dB 55.80 55.99 46.34 53.98

Avg. 83.75 83.45 78.97 82.67
(47.71)

20 dB 97.76 97.39 97.69 97.60

15 dB 96.02 95.77 95.05 95.73

IMM-CEP 10 dB 91.57 91.58 89.49 91.16

5 dB 81.88 81.06 77.44 80.66

0 dB 59.79 59.02 52.82 58.09

Avg. 85.40 84.97 82.50 84.65
(56.68)

The recognition results obtained from the AURORA2 task

in clean training condition are shown in Table 2 where IMM-

CEP denotes the proposed feature compensation technique in

the cepstral domain and IMM denotes the conventional IMM

feature compensation technique performed in the log-spectral

domain. The relative improvement represents an averaged

word recognition error reduction rate compared to the base-

line over the SNR range from 20 dB to 0 dB. In Table 2, we

can easily observe that the IMM-CEP approach outperformed

the conventional IMM algorithm which was carried out in the

log-spectral domain. There was a relatively more prominent

performance improvement in set C, which means that the pro-

posed algorithm is efficient not only to compensate the addi-

tive noise, but also to compensate the channel mismatch.

5. CONCLUSIONS

In this paper, we have presented a new feature compensa-

tion technique in the cepstral domain. We use the statical

linear approximation method to linearize the non-linear rela-

tion among cepstral coefficients of the clean speech, noise and

noisy speech. The coefficients of the linear approximation are

designed to have only diagonal components which enable us

to apply the original IMM algorithm with little modification.

From a number of experiments on the AURORA2 database,

the proposed approach has been shown to outperform the con-

ventional IMM algorithm carried out in the log-spectral do-

main.
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