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ABSTRACT

We propose a noise suppression method based on multi-model com-
positions using particle filtering. In real environments, input speech
for speech recognition includes many kinds of noise signals. For
such noisy speech, we previously proposed Multi-model Noise Sup-
pression (MM-NS) that uses many kinds of noise models and their
compositions obtained from training data. However, since MM-NS
only uses the static property of noise models, handling unknown
noise distributions is difficult. We introduce a particle filter into
MM-NS. The distributions of noise models are used as prior distribu-
tions of particle filtering to increase the accuracy of the estimation of
noise signals for input data. We evaluated this method using the E-
Nightingale task, which contains voice memoranda spoken by nurses
during actual work at hospitals. The proposed method outperformed
the original MM-NS.

Index Terms— speech recognition, noise suppression, model
composition, particle filter, E-Nightingale project

1. INTRODUCTION

We have been working on the E-Nightingale Project to establish
the fundamental technology for a knowledge sharing system based
on understanding everyday activities and situations[1]. The project
focuses on the prevention and reduction of medical malpractice in
medical care domains. We have been collecting and analyzing voice
memoranda recorded by nurses about their services and tasks while
working. Recently, we started to evaluate the speech recognition
performance of these voice memoranda. However, this recognition
task is difficult because they are very noisy spontaneous speech that
includes many kinds of noise signals and other voices. Now, we are
working on noise suppression for speech recognition.

Many noise suppression methods have been proposed to im-
prove the speech recognition performance of noisy speech. For sta-
tionary noise signals, Spectral Subtraction[2] and Parallel Model
Combination[3] have been proposed. The Gaussian Mixture Model
(GMM) based Minimum Mean-Squared Error (MMSE) method[4]
assumes that input noise is stationary but fluctuating. Recently, noise
suppression research has focused on non-stationary noise, including
a sequential EM approach[5], a particle filtering approach[6], and so
on. Since these methods usually assume that only one kind of noise
signal exists, applying them to noisy speech that includes many kinds
of noise signals is difficult. In general, not only stationary noise
signals but also accidental noise signals occur in real environments.
Furthermore, obtaining the actual noise signals from input signals is
very difficult.

To solve this problem, we previously proposed Multi-model Noise
Suppression (MM-NS), which includes many kinds of noise models,
uses multi-pass search to find noise label sequences, and suppresses
noise signals by a GMM-based MMSE method extended to multi-
model compositions[7]. Although this method needs training data

Target speechBeep
Conversation with

 a coworker

Power

Fig. 1. Wave sample including target speech

for noise models, it obtained better performance than the conven-
tional method, Single-Model Noise Suppression (SM-NS). However,
it is difficult for MM-NS to obtain good performance for unknown
noise distributions because it only uses static models obtained from
training data. MM-NS can handle unknown distributions by a large
number of mixture components and weighting using posterior prob-
abilities in the GMM-based MMSE scheme. However, this scheme
is insufficient, and requires a huge number of distributions for com-
posite models. When the number of mixture components for each
noise model increases, the total number of distributions grows expo-
nentially.

Therefore, MM-NS needs a dynamic estimation scheme for noise
signals. Using particle filtering, we propose a new noise suppres-
sion method, MM-NS, to realize non-linear noise estimation. First,
MM-NS obtains the best label sequence from an input speech by
multi-pass search using multi-label noise models, multi-label n-gram
models, and a multi-label lexicon. Second, using labels assigned to
each frame, a GMM-based MMSE extended to multi-model com-
positions is performed. Into this new method, a particle filter with
Markov Chain Monte Carlo (MCMC) is integrated that can dynam-
ically estimate noise signals. When new noise is detected by label
recognition, particles are sampled from the model of the detected
noise as prior distributions. Therefore, a particle filter can estimate
the current noise distribution more precisely. Even if a noise signal
is unknown, this method can estimate approximate noise distribu-
tion from preceding frames by particle filtering. Therefore, this new
method includes the dynamic estimation of noise signals to solve
previous problems.

The rest of our paper is organized as follows. First, in Section
2, we briefly explain our motivation, the E-Nightingale project, and
its recognition task. Next, our proposed method is described in Sec-
tion 3. In Section 4, we perform experiments and report results and
conclude this paper in Section 5.

2. E-NIGHTINGALE PROJECT

One purpose of the E-Nightingale project is establishing technology
using wearable computers and sensor networks to support nursing
services[1]. To analyze daily nursing activities, we recorded and
collected voice memoranda in real environments while nurses were
working. We asked them to record short sentences about each nurs-
ing event using IC recorders with small microphones attached to
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their chests. Figure 1 shows a sample of recorded speech where a
nurse said, “the service adjustment meeting is finished.” This sample
includes a beep, a target utterance needed for analysis, conversations
with a coworker, and other persons’ speech as background noise.
Recognizing such utterances is very difficult because many kinds of
non-stationary noise signals are included, and the utterances are not
so long, but they include many kinds of spontaneous speech, e.g.,
small and ambiguous voices with local accents. These data also in-
clude many general and essential speech recognition problems.

3. MULTI-MODEL NOISE SUPPRESSION USING
PARTICLE FILTERING

3.1. Overview of MM-NS

In this section, we describe an overview of our proposed method.
One key point is that it uses model compositions to represent over-
lapped noise signals. First, we define “multi-label” to represent the
labels of composite models. To consider overlapped noise signals,
we first made each speech or noise model and then combinations
among them. These acoustic models are called multi-label acoustic
models or “multi-models.” Figure 2 shows an example of multi-
layered noise labels and multi-labels.

In this paper, we used GMMs to represent them. We also made a
multi-label lexicon and multi-label n-gram models from multi-label
training data.

Figure 3 shows the flow of our method. Using the above models
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Fig. 4. Overview of particle filtering for MM-NS. This figure shows
noise distributions for each frame. To represent the “Noise 0” distri-
bution as a background noise at the first frame, particles are sampled
from the “Noise 0” model. At each frame, a noise distribution are
estimated by particle filtering. When “Noise 1” is detected by label
recognition, particles from the “Noise 1” model are added to esti-
mate the current “Noise 1” distribution. When “Noise 1” disappears,
its particles are discarded, and new particles of “Noise 0” are added
to reset particles.

and the lexicon, the best multi-label sequence is obtained by multi-
pass search. After that, model-based frame-wise noise suppression
is performed.

3.2. Noise suppression procedure

In the log Mel-spectral domain, when xt, st, and nt(n) are vec-
tor representations at the t-th frame of observed noisy speech, clean
speech, and the n-th noise, respectively, the observation process of
xt can be written as:

xt = st + log

"
I + exp

(
log

 
NX

n=1

exp (nt(n))

!
− st

)#

+ vt

= st + log {I + exp(nt − st)} + vt

= st + g(st,nt) + vt (1)

= f(st,nt) + vt, (2)

vt ∼ N (0,Σx), (3)

where nt is composite noise including all noise at time t and g(st,nt)
is a mismatch factor between clean speech st and noisy observation
xt. vt denotes error signal. Σx is the covariance matrix of noisy
speech model.

Since this approach can detect voice activity intervals, noise sup-
pression can be done separately for each interval. We define mis-
match factor g(st,nt) for each mixture component as:

g(st,l,nt,l) =

j
μx,l − μs,l for target utterances,
μx,l − ε for the others,

(4)

where μx,l is the l-th mean vector of the noisy speech model and
is made by combining the l-th mean vector μs,l of the clean speech
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model and an estimated noise model for the target utterance. ε is a
small positive number that can control the power of residual signals
after noise suppression.

Furthermore, we assume that the state transition process of the
l-th mixture component nt,l(n) in noise nt(n) can be modeled by
the following random walk process:

nt+1,l(n) = nt,l(n) + wt, (5)

wt ∼ N (0,Σn(n),l), (6)

where wt is the driving noise and Σn(n),l is the covariance matrix
of noise nt,l(n). We define a dynamic system using Eqs. (2) and (5),
and define a particle filter similar to [6].

Our proposed method used an extended Kalman particle filter
with residual sampling and MCMC as did [6]. To introduce it to
MM-NS, the distributions of noise models are used as priors for par-
ticles. Figure 4 shows an overview of particle filtering for MM-
NS. Initially, particles for noise distributions are drawn from a back-
ground noise model “Noise 0.” When a new noise, “Noise 1,” is
detected at time t by the noise label recognition, new particles are
drawn from the “Noise 1” model. In the next frame, “Noise 1” par-
ticles are estimated by the extended Kalman filter. When “Noise 1”
disappears, its particles are also discarded. At this time, new parti-
cles are sampled from “Noise 0” to reset particles.

The proposed method can especially handle accidental noise sig-
nals. Furthermore, in this method, particle pairs between clean speech
and noise models must be made in particle filtering at each frame.
Therefore, particles must be made from combinations of particles of
clean speech and noise.

Here, we show the algorithm of the noise suppression procedure:

Multi-model Noise Suppression based on Particle Filtering:
1. Initialization

(a) Frame index: t = 0

(b) For i = 1, . . . , I

draw particles n
(i)
0 from the background noise model. i is the

particle’s index.

2. For t = 1, 2, . . . , T

(a) Importance sampling step (particle filtering):

i. If this frame is a speech interval,

for i = 1, . . . , I , draw speech particles s
(i)
t from the clean

speech model

s
(i)
t ∼

LsX
l=1

ws,lN (μs,l,Σs,l),

where μs,l and Σs,l denote the l-th mean vector and covari-
ance matrix of the speech model, respectively, and Ls is the
number of mixture components.

ii. If new noise n(n) is detected,
for j = 1, . . . , J , draw the noise particles,

n
(j)
t−1 ∼

Ln(n)X
l=1

wn(n),lN (μn(n),l,Σn(n),l),

where j is the index of noise particle, μn(n),l and Σn(n),l

denote the l-th mean vector and covariance matrix of the n-th
noise model, respectively, and Ln(n) is the number of mixture
components.

iii. Remake particle sets for noisy speech combined between s
(i)
t

and n
(j)
t−1. Total number of particles: K = I × (J + 1)

iv. For k = 1, . . . , K
update the particles with the extended Kalman filter. Estimate

n̂
(k)
t and Σ̂

(k)
nt .

v. For k = 1, . . . , K , w
(k)
t ∝ w

(k)
t−1p(xt|n(k)

t ).

vi. For k = 1, . . . , K ,

obtain normalized weights, ŵ
(k)
t = w

(k)
t /

PK
k=1 w

(k)
t .

(b) Residual sampling step:
Multiply/suppress particles with high/low importance weights,
respectively.

(c) MCMC step:
Apply Metropolis-Hastings sampling.

(d) Estimation of a noise posterior distribution:
Obtain a posterior distribution from particles.

p(n0:t|x0:t) �
KX

k=1

ŵ
(k)
t p(n

(k)
0:t |x0:t) = N (μn̂t ,Σn̂t),

where μn̂t and Σn̂t are the estimated mean vector and covari-
ance matrix of the noise model, respectively.

(e) GMM-based MMSE estimation of clean speech: Obtain esti-
mated clean speech using the mismatch factor.

ŝt = xt −
LsX
l=1

P (l|xt)g(st,l, n̂t,l).

P (l|xt) is given by

P (l|xt) =
ws,lN (xt; μx,l,Σx,l)PLs

m ws,mN (xt; μx,m,Σx,m)
,

where μx,l and Σx,l denote the mean vector and the covari-
ance matrix of the noisy speech model, respectively. They
are estimated from the clean speech model and the estimated
noise model N (μn̂t ,Σn̂t) by applying the first order Taylor
series expansion[8].

This method can estimate the current noise distribution: that is,
only a single distribution is obtained. Although the original MM-NS
required the calculation of mixture components for noise models,
this proposed method does not. Therefore, its GMM-based MMSE
estimation of clean speech is easier than the original MM-NS.

4. EXPERIMENTS

4.1. Experimental setup

Our experimental conditions are identical as [7], except for the con-
ditions of the particle filters. The E-Nightingale data were recorded
in a Japanese hospital. The data collected on the first day were used
for evaluation. The length of each file was 10 sec including one
target utterance. The data from the second day were used as train-
ing data to adapt the acoustic models to speakers and to create noise
GMMs for noise suppression. In this paper, diagonal covariance ma-
trices were used for all distributions. Table 1 shows the details of
the experimental conditions. Test data included 208 utterances with
1,051 words spoken by eight speakers who were selected as ordinary
speakers and included both in the test and adaptation data.

For noise suppression, an HTK version 3.3 was used to extract
feature parameters and train GMMs. 24-order outputs of log Mel-
filter bank “FBANK” were used as feature parameters. We used
MFCC models converted from FBANK models for noise label recog-
nition. Speaker-adapted GMMs were used as clean speech models.
The remaining speech and noise models were generated as GMMs
with four, eight, and 12 mixture components. In this training data,
32 kinds of noise models were obtained including a target speech
model. The total number of models including the composite mod-
els was 194. In this data, the number of models combined into one
model was two, or three. Furthermore, estimated background noise
for each input speech was combined into all models when noise sup-
pression was performed.
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Table 1. Experimental conditions

Common conditions
Analysis 16kHz sampling rate, 16 bit
conditions Frame shift: 10 ms, frame length: 20 ms

Test data 8 females (208 utterances, 1,051 words)
Average SNR: 8.25 dB

Noise label recognition & noise suppression
Tools HTK Ver. 3.3 (for GMM training)

ATRASR Ver. 3.6 (for decoding)

Feature 24 Mel-filter bank (for noise suppression)
parameters 12 MFCC and 0th MFCC (for search)

Acoustic 32 basic GMMs (speech and noise)
models Training data: about one hour

162 composite models
Clean speech: Speaker-adapted GMM
about 200 mixture components

Language Multi-label bigram, multi-label trigram
models Training data: 354 utterances

Lexicon 194 multi-labels

Particles Original PF: 300 particles
PF-MM-NS: 110 particles

Speech recognition
Tools ATRASR Ver.3.6

Feature 12 MFCC, 12 ΔMFCC, Δlog power
parameters Cepstral Mean Subtraction (CMS)

AMs 2,086 states with five mixture components
Speaker-adapted models

AM Training Topology training data: 37 hours
DB Re-training DB: 21 hours (female only)

LMs Word bigram, word trigram
Out of Vocabulary (OOV) rate: 2.36%

LM Training E-Nightingale data:
DB Nine days, 9,936 utterances

Lexicon 2,636 words

For particle filters, 300 particles were used for the original par-
ticle filter method[6], and 110 particles were used for our proposed
method. Both Real Time Factors of noise suppression processing of
these methods were about 2.5 by Intel Pentium-D 3.2 GHz.

As a speech recognizer and a training tool, we used the ATRASR
large-vocabulary speech recognition system version 3.6 developed
by the ATR Spoken Language Communication Labs. An acoustic
model for word recognition was generated by MDL-SSS[9]. MAP-
VFS[10] was used as the speaker-adaptation method.

4.2. Experimental results

Figure 5 shows word accuracy rates for several methods. “SM-NS”
is a Single-Model Noise Suppression method using one distribution
for a noise model. “PF” denotes the original particle filter-based
method[6]. This method could not obtain better performance in this
task than the baseline because it made many insertion errors, and
tracking accidental noise is difficult. “PF-MM-NS (4 mix.),” “PF-
MM-NS (8 mix.),” and “PF-MM-NS (12 mix.)” are particle filtering
methods based on MM-NS using noise models with four, eight, and
12 mixture components, respectively. These patterns obtained better
performance than the MM-NS with identical noise models. These
results show that our proposed method can handle accidental noise
signals using noise models and particle filtering.

5. CONCLUSION
We proposed Multi-model Noise Suppression (MM-NS) based on
particle filtering. This method can handle many kinds of noise sig-
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nals including speech data recorded in real environments. Further-
more, it can estimate unknown noise distribution using a particle fil-
ter with Markov Chain Monte Carlo. It obtained better performance
than the original MM-NS with identical noise models.
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