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ABSTRACT

Missing data theory (MDT) has been applied to handle the
problem of noise-robust speech recognition. Conventional
MDT-systems require acoustic models that are expressed in
the log-spectral rather than in the cepstral domain, which leads
to a loss in accuracy. Therefore, we have already introduced
a MDT-technique that can be applied in any feature domain
that is a linear transform of log-spectra. This MDT-system
requires hard decisions about the reliability of each spectral
component. When computed from noisy data, misclassi ca-
tion errors in the mask are hardly unavoidable and the recog-
nition rate will signi cantly degrade. The risk of misclas-
si cations can be reduced by estimating a probability that
the component is reliable, e.g. a fuzzy mask. In this paper,
we extend our MDT-system to be applied in the probabilistic
decision framework. Experiments on the Aurora2 database
demonstrate a further increase in recognition accuracy, espe-
cially at low SNRs.

Index Terms— speech recognition, noise robustness, mis-
sing data techniques, fuzzy masks

1. INTRODUCTION

Additive noise leads to a decrease in performance of speech
recognition systems due to the mismatch between the speech
models (obtained in clean conditions) and the statistics of
speech in the noisy test conditions. A MDT-based recogni-
zer will handle this noise robustness problem by adding two
import modi cations to a speech recognizer. In the front-end,
the missing data detector (MDD) will decide for each time-
frequency cell whether it is dominated by speech or by noise.
If a hard decision is made, the missing data mask will indicate
that the cell is either completely reliable or else completely
missing. The accuracy of such a binary mask is very crucial
since mask estimation errors will cause a signi cant degra-
dation in recognition performance. Previous studies ([1], [2]
and [3]) have shown that the MDT-based recognizer achieves
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better results when fuzzy (or soft) masks are used which rep-
resent the probability that a spectral component is reliable.
A second modi cation in the MDT-recognizer needs to

be made during the evaluation of the acoustic model, e.g.
the fact that some of the data are missing should be taken
into account. For reasons of accuracy, the ASR-system oper-
ates in a domain that is a linear transformation of log-spectra,
such as cepstra. However, conventional MDT-techniques like
boundedmarginalization [4], [5], or the imputation techniques
of [6], [7], rely on GMMs with diagonal covariance expressed
in the log-spectral domain. Therefore, an alternative MDT-
technique was introduced in [8] where the spectral represen-
tation can be replaced by any linear transform of the log-
spectra. By using MDT-techniques with cepstra, a superior
accuracy and robustness relative to their spectral competitors
is obtained. The price we pay is that the imputation of the
missing data is more complex: the evaluation of a Gaussian
now requires the solution of a Non-Negative Least Squares
problem. Through the introduction of the ProSpect features
[9], the computational load of the cepstral representation is
alleviated while their accuracy is maintained. So far, these
MDT-techniques could only be used with binary missing data
masks. An extension to these MDT-techniques will be pre-
sented in this paper such that they can cope with fuzzy masks.
The paper is organized as follows. The missing data tech-

niques with binary masks are rst reviewed in section 2 and
extended in section 3 for the use with fuzzy masks. In section
4, the performance of these techniques are compared on the
Aurora2 connected digit recognition task. Conclusions are
given in section 5.

2. MDT FOR BINARY MASKS

The speech recognizer is assumed to have a mainstreamHMM-
based architecture with Gaussian mixture models (GMM). In
the front-end, a low resolutionMEL-spectral representation is
computed by a lter bank with D channels through window-
ing, framing, FFT and lter bank integration. Let s, n and
y denote the vector of D log-MEL spectral features at a cer-
tain time frame for the clean speech, the noise and the noisy
signal respectively. Ideal binary masks are then obtained by
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comparing the log-spectra of clean speech and noise:

m =
(
s ≥ n− θ

)
0/1

(1)

where (. . . )0/1 equals 1 (0) when the logical expression in-
side the brackets holds (does not hold) and θ is a constant
threshold. If 1 is assigned to a time-frequency cell, it is domi-
nated by speech, while the mask value 0 indicates that the cell
is masked by background noise. The reliable components sr

of the clean speech are approximated by their counterparts in
the noisy speech yr, while the unreliable speech components
su are unknown and have to be estimated.
In the maximum likelihood per Gaussian-based imputa-

tion [9], the missing part of s is estimated by minimizing the
(negative) log-likelihood Φ for each Gaussian mixture com-
ponent i over s:

Φi =
1

2
(s− μi)

′P i(s− μi)

s.t. sr = yr and su ≤ yu

(2)

where μi is the Gaussian mean and P i is an inverse covari-
ance or precision matrix, both estimated on clean training
data. The precisionmatrix can be expressed in the log-spectral
domain or in any other domain that is a linear transformation
of log-spectral features. All these variants of MDT have a
known symmetric positive semi-de nite precision matrix P i.
First, we show how to solve (2) in the log-spectral domain,
then we discuss the strategy for solving the problem in the
ProSpect (or cepstral) domain.

2.1. Log-spectral domain

In most MDT-systems, GMMs with diagonal covariance in
the log-spectral domain are used. The optimization problem
is then decomposed inD independent problems and each j-th
component of the clean speech estimate ŝi is computed as:

ŝj,i =

{
(1−mj)μj,i + mjyj, yj > μj,i,

yj, yj ≤ μj,i.
(3)

2.2. ProSpect domain

Higher accuracies are obtained with GMMs with a diago-
nal covariance in the cepstral domain, in which case P i be-
comes non-diagonal. Imputation then becomes computation-
ally more complex since the estimation of the unreliable part
now requires the solution of a Non-Negative Least Square
(NNLSQ) problem, e.g. the constrained minimization of a
quadratic. In order to reduce the computational load for sol-
ving the NNLSQ-problem, the ProSpect features were de-
ned in [9]. Like cepstra, they are computed by a linear
transform that has the property of decorrelating the spectral
features such that they can be modeled using a GMM with
diagonal covariances. While these features can be applied
in any speech recognition system, they show a clear bene t

in MDT-based recognition in particular since they reduce the
computational requirements over cepstral MDT while the ac-
curacy is maintained.
To avoid the costly matrix inversions, the NNLSQ-pro-

blem will be solved by the gradient descent method discussed
in [9]. Therefore, the search is started from the spectral MDT
solution (3). Within each iteration k, these initial values are
updated by:

s
(k+1)
i = s

(k)
i − α̂∇φ

(k)
i (4)

where the step direction ∇φ
(k)
i is derived from the cost gra-

dient ∇Φ
(k)
i = P i(s

(k)
i − μi) by zeroing out those compo-

nents that (i) are labeled as reliable or (ii) where the gradient
is negative and the corresponding speech estimate is on the
constraint boundary. The optimal step size is given by

α =
∇φ

(k)′
i ∇φ

(k)
i

∇φ
(k)′
i P i∇φ

(k)
i

(5)

and is reduced to α̂ such that all components of s(k+1)
i satisfy

the constraint s(k+1)
i ≤ y, hence

α̂ = min
[
min

(
α∇φ

(k)
i , y − s

(k)
i

)
./∇φ

(k)
i

]
(6)

where ./ denotes the element-wise division. Experiments have
shown that the gradient descent method converges in 1 or 2
(= K) iterations [9].
Finally, we obtain a clean speech estimate ŝi = s

(K)
i for

each Gaussian i, from which we can compute the correspond-
ing likelihood:

f(ŝi|i) =
1

√
2π

D√
|P i|

e− 1
2 (ŝi − μi)

′P i(ŝi − μi). (7)

3. MDT FOR FUZZY MASKS

Misclassi cations in the binary mask will signi cantly reduce
the recognition rate of the MDT-based recognizer. This can
be solved by replacing the hard missing data decision of (1)
by a soft-decision strategy. A fuzzy mask vector w can be
generated by the approach of [2], e.g. by the substitution of
(1) in a sigmoid function:

w =

(
1

1 + exp
(− ρ(s− n− θ)

)
)

[0..1]

(8)

with slope ρ and where (. . . )[0..1] means that the mask vec-
tor now consists of continuous values between 0 and 1. If
the value is close to 1, the component has a high probability
of being dominated by speech. In order to estimate the clean
speech, we need to modify the constrained optimization prob-
lem (2) such that it can copewith the probabilistic information
provided by the fuzzy masks. Therefore, we need to formu-
late a new optimization function that should have the ability
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that (a) if the mask value is close to 1, the optimal point tends
to the observation value, and (b) if the mask value is close to
0, the optimal point tends to a value as close to the Gaussian
mean as permitted by the constraint s ≤ y. Condition (b) is
ful lled if the precision matrix P i in (2) is replaced by

Qi =
(
I −W

) 1

2
′

P i

(
I −W

) 1

2 (9)

where I denotes the D × D identity matrix and W is the
D × D diagonal matrix with the elements of w on the diag-
onal. Remark that the matrix multiplications in (9) preserve
the symmetric structure of P i. This modi cation together
with the addition of the extra term 1

2 (s− y)′W (s− y), will
meet condition (a). The proposed optimization problem for
fuzzy masks then becomes:

Ψi =
1

2
(s− μi)

′Qi(s− μi) +
1

2
(s− y)′W (s− y)

s.t. s ≤ y

(10)

Note that all constraints are now inequality constraints, since
there is no evidence for a speci c component for being re-
liable. A description of the solution strategy of (10) in the
log-spectral domain and in the ProSpect (or cepstral) domain,
can be found in the next subsections.

3.1. Log-spectral domain

In the log-spectral domain, the components of the mean ofΨi

are given by

μ̄j,i =
(1− wj)μj,i/σ2

j,i + wjyj

(1− wj)/σ2
j,i + wj

(11)

with σ2
j,i the j-th diagonal element of the log-spectral covari-

ance matrix of Gaussian i. The components of the optimal
point ŝi that minimizes (10) are then found as

ŝj,i =

{
μ̄j,i, yj > μ̄j,i,

yj , yj ≤ μ̄j,i.
(12)

Remark that for mask values wj equal to 0 or 1, the solution
(12) equals those of (3).

3.2. ProSpect domain

Since (10) is still a constrained minimization problem of a
quadratic, a gradient descent method similar to the one ex-
plained in section 2.1 is used for solving the problem in the
cepstral and ProSpect domain. A good choice to initialize the
search is to start from the log-spectral solution (12) or from
the point: min

(
μi + w(y − μi), y

)
. This starting point is

then iteratively updated by the rule:

s
(k+1)
i = s

(k)
i − β̂∇ψ

(k)
i . (13)

The step direction∇ψ
(k)
i is equal to the cost gradient

∇Ψ
(k)
i = Qi(s

(k)
i − μi) + W (s

(k)
i − y) (14)

for those components where the corresponding speech esti-
mate lies below the constraint boundary, otherwise the com-
ponent of ∇ψ

(k)
i will be set to zero. The optimal step size is

given by

β =
∇ψ

(k)′
i ∇ψ

(k)
i

∇ψ
(k)′
i (Qi + W )∇ψ

(k)
i

(15)

and is reduced to β̂ in the same way as was done in section
2.2. Convergence is again reached after 1 or 2 iteration steps.
Finally, the cost of each Gaussian i of the acoustic model is
obtained by the substitution of ŝi in (7).

4. EXPERIMENTAL RESULTS

The evaluation of the proposed MDT-based recognizers is
done on the Aurora2 TI-Digits speech database, test set A.
The acousticmodel in the back-end consists of an HMMGaus-
sian mixture architecture with 16 states per digit and 20 Gaus-
sians per state. The optional inter-word silence is modeled
by 1 or 3 states with 36 Gaussians per state, while leading
and trailing silence have 3 states. The total number of Gaus-
sians is 3628. The front-end of the MDT-system uses 23-
channel MEL lter bank spectra which are transformed to the
ProSpect domain for some of the experiments reported below.
The static features are compensated with the proposed MDT-
methods for binary and fuzzy masks, while dynamic features
are left uncompensated since they are more robust to noise.
The accuracy results for the four noise types of the test

set are presented in table 1 for ideal (oracle) masks. The bi-
nary ideal mask uses (1) as a decision criterion and the fuzzy
ideal mask is computed as in (8). The results are compared by
solving the optimization problem of (2) and (10) in the log-
spectral and ProSpect domain. It can be seen that ProSpect
MDT-techniques increase the robustness of the log-spectral
MDT-system for both mask versions and that fuzzy masks
perform slightly better than binary masks. This can be due
to the fact that when speech and noise energy are very close,
making a hard decision is not always the best choice.
In a second experiment, we replace the static ideal mask

by a real mask computed from the noisy data using harmo-
nicity and SNR information [10]. These masks exploit the
strong harmonicity characteristics of voiced speech arising
from the presence of the pitch and its harmonics. Hence,
the voiced speech can be decomposed into a harmonic sig-
nal component which consists of the spectral lines at integer
pitch multiples, the remaining spectral lines result in the ape-
riodic part. The decision criterion of [10] uses the idea that
the harmonic part will be dominated by the speech which may
lead to poor mask decisions in unvoiced speech segments. As
can be seen from table 2, the in uence of these masking errors
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mask SNR log-spectral MDT ProSpect MDT
type (dB) Subw. Babble Car Exhib. Avg. Subw. Babble Car Exhib. Avg.

15 96.41 96.40 97.46 96.20 96.62 98.96 98.73 99.11 98.89 98.92
binary 10 93.80 94.44 93.92 92.69 93.71 97.70 98.19 97.82 96.73 97.61

5 86.52 87.55 84.55 82.94 85.39 93.34 95.50 92.07 90.28 92.80
15 96.84 97.01 97.76 96.82 97.11 98.77 98.58 98.78 98.52 98.66

fuzzy 10 94.50 94.92 95.11 93.77 94.58 97.67 97.94 98.42 97.13 97.79
5 86.92 88.09 86.10 83.74 86.21 94.66 96.01 94.09 91.92 94.17

Table 1. Recognition accuracy on Aurora2 test set A using ideal masks and log-spectral and ProSpect MDT.

mask SNR log-spectral MDT ProSpect MDT
type (dB) Subw. Babble Car Exhib. Avg. Subw. Babble Car Exhib. Avg.

15 95.30 94.01 96.54 95.25 95.28 97.61 97.04 98.12 97.87 97.66
binary 10 88.39 88.54 91.20 87.84 88.99 94.87 93.29 95.02 93.86 94.26

5 73.53 69.74 74.47 69.64 71.85 83.14 81.92 81.90 79.51 81.62
15 96.22 95.89 96.78 96.17 96.27 97.61 97.40 98.33 98.09 97.86

fuzzy 10 91.96 92.50 91.98 90.74 91.80 95.12 94.50 95.47 94.14 94.81
5 78.11 77.75 75.31 74.08 76.31 85.97 85.37 83.48 81.73 84.14

Table 2. Recognition accuracy on Aurora2 test set A using real masks and log-spectral and ProSpect MDT.

is signi cantly reduced (especially for 5dB SNR) by casting
the decision criterion of [10] in a sigmoid function. These
unvoiced regions are now assigned a mask value close to 0.5,
e.g. expressing uncertainty, such that more freedom is left to
the search algorithm in the recognizer’s back-end. Also, the
advantage of using MDT-systems with ProSpect features in-
stead of the conventional log-spectral features becomes clear.

5. CONCLUSIONS

We have extended our previous MDT-technique for binary
masks such that it can be applied with fuzzy masks. Besides
the log-spectral domain, both techniques are applicable for
other feature representations, such as cepstra and ProSpects.
The experiments showed the advantages of using ProSpect
features over the customary log-spectra. We have also demon-
strated that the noise robustness of the MDT-based recognizer
can further be improved by using fuzzy masks instead of bi-
nary masks and this for both ideal (oracle) and real masks.
Future work may now exist to exploit probabilistic mask esti-
mation methods in the ProSpect MDT-framework.
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