
A NOVEL SPEAKER CLUSTERING ALGORITHM VIA SUPERVISED AFFINITY
PROPAGATION

Xiang Zhang, Jie Gao, Ping Lu, Yonghong Yan

ThinkIT Speech Lab, Institute of Acoustics, Chinese Academy of Sciences, Beijing, P.R.China
{xzhang, jgao, plu, yonghong.yan}@hccl.ioa.ac.cn

ABSTRACT

This paper addresses the problem of speaker clustering in telephone
conversations. Recently, a new clustering algorithm named af nity
propagation (AP) is proposed. It exhibits fast execution speed and
nds clusters with low error. However, AP is an unsupervised ap-

proach which may make the resulting number of clusters different
from the actual one. This deteriorates the speaker purity dramat-
ically. This paper proposes a modi ed method named supervised
af nity propagation (SAP), which automatically reruns the AP pro-
cedure to make the nal number of clusters converge to the speci ed
number. Experiments are carried out to compare SAP with tradi-
tional k-means and agglomerative hierarchical clustering on 4-hour
summed channel conversations in the NIST 2004 Speaker Recogni-
tion Evaluation. Experiment results show that the SAP method leads
to a noticeable speaker purity improvement with slight cluster purity
decrease compared with AP.

Index Terms— speaker clustering, af nity propagation, super-
vised af nity propagation, generalized likelihood ratio

1. INTRODUCTION

In the recent past, interests and needs in speech recognition com-
munity (by enabling the use of speaker dependent systems) have
provided a major motivation for the research on speaker cluster-
ing, which refers to the task of classifying the speech utterances
into clusters such that each cluster contains speech from one speaker
and also speech from the same speaker is grouped into the same
cluster[1, 2, 3, 4, 5, 6]. Speaker clustering is usually based on either
the BIC criterion or on Cross Likelihood Ratio (CLR) [7, 8]. A thor-
ough overview of available speaker clustering algorithms is given in
[9].

Current approaches for speaker clustering can be classi ed into
two categories: unsupervised and supervised techniques. The main
application considered in this research is to cluster the speech seg-
ments in telephone conversations with known number of speakers,
which is a supervised speaker clustering problem. The conventional
k-means and agglomerative (bottom-up,clumping) hierarchical clus-
tering (AHC) are two widely used clustering methods. K-means
[10] begins with an initial set of randomly selected c cluster cen-
ters, where c is the desired number of clusters. Then it reruns several
times to update the centers until the cluster centers do not change.
This method is quite sensitive to the initial selection of centers, which

This work is partially supported by MOST (973 program,
2004CB318106), the National Natural Science Foundation of China
(10574140, 60535030), the National High Technology Research and Devel-
opment Program of China (863 program, 2006AA01010, 2006AA01Z195).

affects the number of iterations and the precision of speaker cluster-
ing. In this paper, AHC uses the number of speakers as stopping cri-
terion. The AHC procedure [4, 9] starts with initializing leaf clusters
of tree with speech utterances and calculating pair-wise distances.
Then it continues to aggregate clusters together and update distances
of clusters to the new cluster. The procedure terminates when the
speci ed number of clusters has been obtained. This method does
not require that all utterances within a cluster be similar to a single
center and is thus not well-suited to some tasks.

Af nity propagation [11] is a clustering method proposed re-
cently, which has been used to cluster images of face, identify rep-
resentative sentences, detect genes, and so on [12]. In this paper,
we introduce it into our system to cluster speech segments. Af n-
ity propagation assumes that all the speech segments are potential
centers. By viewing each segment as a node in a network, af nity
propagation recursively transmits real-valued messages along edges
of the network until a good set of centers and corresponding clusters
emerges. As described later, messages are updated on the basis of
simple formulas during the procedure with precomputed similarities.
Af nity propagation is an unsupervised clustering method, which is
suitable for the situations of unknown number of speakers. However,
our experiment shows that when the number of speakers is given,
adopting af nity propagation for speaker clustering may generate
undesired number of clusters and low speaker purity.

This paper proposes a modi ed method named supervised af n-
ity propagation (SAP). It is an adaptive approach based on af n-
ity propagation, which automatically reruns the af nity propagation
procedure to make the resulting number of clusters converge to the
desired number of speakers. This method has fast processing speed
and yields high precision. The speaker purity generated by SAP is
improved signi cantly with slight decrease in execution speed and
cluster purity compared with af nity propagation.

The rest of this paper is organized as follows: In Section 2, af n-
ity propagation algorithm is introduced into speaker clustering. In
Section 3, an adaptive approach named SAP is proposed to improve
the system performance with speci ed number of clusters. In Sec-
tion 4, we present the main evaluation metrics for speaker clustering
and give the comparative results. Finally, the conclusion is given in
Section 5.

2. SPEAKER CLUSTERING VIA AP

Recently, a new clustering approach named af nity propagation (AP)
is proposed, which has fast processing speed and can avoid many of
the poor solutions caused by unlucky initializations and hard deci-
sions by simultaneously considering all the data points as candidate
centers and gradually identifying clusters. Thus, we introduce AP
for speaker clustering in telephone conversations.

43691-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

The similarity s(i, k), where i �= k, preference s(k, k),
responsibility r(i, k) and availability a(i, k) are the four main
elements in AP. AP takes a collection of real-valued similarities be-
tween speech segments as input, where the similarity s(i, k) indi-
cates how well the segment k is suited to be the center for the seg-
ment i. The preference s(k, k) is a real number for each segment
k. The segments with larger values of s(k, k) are more likely to
be chosen as centers. If a priori, all the segments are equally suit-
able as centers, the preferences should be set to a common value.
The responsibility r(i, k) re ects the accumulated evidence for how
well-suited segment k is to serve as the center for segment i, taking
into account other potential centers for segment i. The availabil-
ity a(i, k) re ects the accumulated evidence for how appropriate it
would be for segment i to choose segment k as its center, taking into
account the support from other segments that segment k should be a
center.

In our AP speaker clustering, each similarity is set to the nega-
tive generalized likelihood ratio (GLR):

s(i, k) = −dGLR(xi, xk), i �= k (1)

where, xi and xk are the speech feature vectors of the two segments,
which can be modeled with two Gaussian models N(μxi ,

P
xi

) and
N(μxk ,

P
xk

). dGLR(xi, xk) is the GLR distance between xi and
xk, which is de ned as follows [2]:

dGLR(xi, xk) =
L(xi; μxi ,

P
xi

) · L(xk; μxk ,
P

xk
)

L(y;μy ,
P

y)
(2)

where, L(∗) is the likelihood function and y is the union of xi and
xk which indicates the concatenation of both feature vectors.

The suitable input preferences are very important to in uence
the nal number of clusters. The larger the values of preferences,
the more clusters will be produced. We set all the preferences to
the same value – the median of total input similarities as mentioned
in [11]. Responsibility and availability are two kinds of message
exchanged between speech segments, which are iteratively updated
by the formulas (3) (4) (5), re ecting the af nity of segments. They
are computed as follows:

r(i, k) = s(i, k) − max
j:j �=k

[s(i, j) + a(i, j)] (3)

For a(i, k), if k = i,

a(i, k) =
X

i
′
:i
′ �=k

max[0, r(i
′
, k)] (4)

If k �= i,

a(i, k) = min{0, r(k, k) +
X

i
′
:i
′ �∈{i,k}

max[0, r(i
′
, k)]} (5)

For the rst iteration, the availabilities are initialized to zero.
AP combines the responsibilities and availabilities to control the

center decisions. For segment i, the segment k which maximizes
r(i, k) + a(i, k) either identi es the segment i as a center if k = i,
or identi es the segment that is the center for segment i if k �= i. The
whole AP procedure terminates after a xed number of iterations or
after the center decisions stay unchanged for some number of iter-
ations. The AP speaker clustering procedure goes as Algorithm 1,
where N denotes the number of segments and M is the maximum
number of iterations.

The procedure of the algorithm shows that the similarities are
computed only once and just the two kinds of message need to be
computed based on the known similarities.

Algorithm 1 (Af nity propagation speaker clustering)
1: begin initialize

N, M, a(i, k)← 0, i = 1 : N, k = 1 : N

s(i, k)← −dGLR(xi, xk), i = 1 : N, k = 1 : N, i �= k

s(k, k) ← median
i=1:N,j=1:N,i�=j

[s(i, j)], k = 1 : N

2: while M �= 0 do
3: update a(i, k) and r(i, k) using equations (3)(4)(5)
4: For each xi, search the segment k which maximizes r(i, k)+

a(i, k) to identify whether segment i is a center or which seg-
ment is the center for it.

5: M ← M − 1
6: if all the r(i, k) + a(i, k) do not change for a xed number

of iterations then
7: goto step 10
8: end if
9: end while

10: end

3. SPEAKER CLUSTERING VIA SAP

3.1. Motivation of SAP

When the number of speakers (clusters) is given, af nity propaga-
tion would not be well-suited to speaker clustering. Our experiment
shows that the number of the clusters produced by AP is often differ-
ent from the expected number. This deteriorates the speaker purity
dramatically due to the speech frames of one speaker assigned to
extra clusters. The problem lies in the fact that AP is an unsuper-
vised method that can not utilize the prior knowledge of the given
number of speakers. In order to overcome the above limitation, this
paper proposes a supervised speaker clustering approach named su-
pervised af nity propagation (SAP), which can take the number of
speakers as input. Experiment results show that this method im-
proves the speaker purity signi cantly compared to AP.

3.2. SAP Speaker Clustering

As reported in [11, 12], the number of clusters in AP is in uenced
by the values of the input preferences. By setting preferences to ap-
propriate values, the expected number of clusters through AP can be
achieved. This motivates the following iterative clustering algorithm
(SAP) with adaptive preferences.

Assuming that Cexp is the expected number of clusters, n is the
current number of iterations in SAP and Cn is the number of clusters
in the nth iteration. The SAP algorithm goes as Algorithm 2.

The equation (6) is used to modify the preferences, as long as the
resulting number of clusters is different from the expected one. If the
number of clusters is larger than the desired number, the preferences
would be decreased. If smaller, the preferences would be increased.

sn+1(k, k) = sn(k, k)− step ∗ (Cn − Cexp) (6)

Where, sn(k, k) and sn+1(k, k) are the preferences of nth and (n+
1)th iteration, step is the adaptive factor controlling the speed of
convergence. The value of adaptive factor should be positive and can
be determined empirically. In our experiment, we set the value to 20.
The rst minus sign in the updated equation assures the nal cluster
number Cn can converge to the desired cluster number Cexp with

4370

Algorithm 2 (SAP)
1: begin initialize

n← 0, C0 ← Cexp, step

a(i, k)← 0, i = 1 : N, k = 1 : N

s(i, k)← −dGLR(xi, xk), i = 1 : N, k = 1 : N, i �= k

sn(k, k) ← median
i=1:N,j=1:N,i�=j

[s(i, j)], k = 1 : N

2: while Cn �= Cexp or n = 0 do
3: n← n + 1
4: execute AP procedure (all the stpes in algorithm 1 without

step 1)
5: get the number of clusters: Cn

6: if Cn = Cexp then
7: get cluster results
8: goto step 13
9: else

10: update preferences using equation (6)
11: end if
12: end while
13: end

an appropriate adaptive factor, as the resulting number of clusters
decreases with the values of preferences.

In the proposed SAP algorithm, the similarities between seg-
ments are computed only once. Only the preferences need to be
calculated after each iteration of SAP. The equations (3)(4)(5) in AP
procedure and the updated equation (6) show that the computational
complexity of SAP procedure increases not too much compared to
AP, and our experiment results show that the speaker purity of SAP
is improved signi cantly with slight cluster purity decrease.

4. EXPERIMENT RESULTS AND EVALUATION

Our experiments are all based on a hand labeled test set of the NIST
2004 Speaker Recognition Evaluation. The test set contains 4-hour
telephone conversations, each of which contains two speakers. Speech
features of 14 line spectrum pair (LSP) are extracted from these
data for every 20-ms Hamming-windowed frame with 10-ms frame
shifts. The experiments for AP and the proposed SAP are carried
out on the test set, and they are compared with those for the con-
ventional AHC and k-means, which are implemented respectively as
described in [9] and [10]. All the algorithms use GLR to calculate
the distance. In both AP and SAP, each similarity is set to a negative
GLR distance. The preferences of AP are set to the median of simi-
larities. The initial preferences of SAP are also set to the median of
similarities.

4.1. Evaluation Metrics

We evaluate our experiments with execution time and other two com-
monly used criteria [4, 13, 14]: cluster purity (cp) and speaker purity
(sp). Cluster purity is a quantity which describes to what extent all
speech frames in the cluster come from the same speaker. Speaker
purity is a quantity which re ects the percentage of frames of speaker
belonging to dominant cluster.

First, we assume k is the total number of speakers, c is the nal
number of clusters, and nij denotes the number of speech frames in
cluster i spoken by speaker j. Then the cluster purity and speaker

purity are de ned as:

cp =

cX

i=1

max
j∈[1:k]

(nij)/

cX

i=1

kX

j=1

nij (7)

sp =
kX

j=1

max
i∈[1:c]

(nij)/
cX

i=1

kX

j=1

nij (8)

4.2. Experiment results

The traditional k-means (the initialized number of seeds is 2, and the
seeds are selected randomly), AHC (bottom-up, using the number of
speakers as stopping criterion), AP and the proposed SAP are imple-
mented respectively. Table 1 lists the AP results for conversations
which have different numbers of speech segments. These conver-
sations used are all chosen from the test set. Table 2 displays the
corresponding performance of the four algorithms. The parameter
t denotes the whole run-time based on our test set, N denotes the
number of segments, and c is the resulting number of clusters.

conversation N c cp (%) sp (%)
1 14 2 99.3 99.3
2 29 2 94.4 94.4
3 40 3 98.8 94.9
4 48 4 98.4 90.2
5 58 5 91.5 68.4
6 65 4 99.7 77.5
7 77 5 96.1 92.2
8 94 6 98.6 44.8
9 109 7 93.4 51.0
10 144 8 97.8 46.8

Table 1. The AP results for different conversations

From Table 1, it can be observed that the resulting numbers of
clusters through AP procedure for many conversations are different
from the actual numbers of speakers, which are all equal to 2 in our
experiments. We can see that the results of cluster purity for most
conversations are excellent. However, the results of speaker purity
for some conversations are not satisfying, especially when the num-
ber of speech segments is large. This is mainly caused by the fact
that AP is an unsupervised algorithm which can not take advantage
of the known number of speakers. This sometimes makes the re-
sulting number of clusters different from the actual one and deteri-
orates the speaker purity dramatically. Therefore, when the number
of speakers is given, a supervised clustering method used to improve
the performance of speaker purity is needed.

AHC k-means AP SAP
t (ms) 75150 55350 71230 73120
cp (%) 90.1 92.6 94.5 92.4
sp (%) 91.6 92.6 84.4 95.2

Table 2. The performance via AHC, k-means, AP and SAP

Table 2 shows the cluster purity and speaker purity of AHC, k-
means, AP and SAP on the whole test set. It can also be seen that
AP generates the highest cluster purity, but the speaker purity of AP

4371

is the lowest among the four methods. SAP leads to about 10.8%
absolute improvement in speaker purity with about 2.1% decrease
in cluster purity compared with AP. The facts show that the speaker
purity of SAP is superior to that of AP when the number of speakers
in the conversation is given, and the cluster purity of SAP decreases
only a little compared with AP.

The results in Table 2 also show that SAP is superior to AHC
in both cluster and speaker purity, and it generates better speaker
purity than k-means. SAP achieves about 2.3% and 3.6% abso-
lute improvements in cluster purity and speaker purity respectively
compared with AHC and gets about 2.6% absolute improvement in
speaker purity with almost the same cluster purity compared with
k-means.

All the facts show that SAP can be well used in telephone speaker
clustering task with known number of speakers. This is mainly be-
cause the AP procedure in SAP framework simultaneously considers
all the segments as candidate centers and gradually identi es clus-
ters, such that it is able to avoid some poor solutions caused by un-
lucky initializations and hard decisions.

40 60 80 100 120 140 160
1000

1500

2000

2500

3000

3500

Number of segments

E
la

ps
ed

tim
e(

m
s)

AHC

AP

SAP

Fig. 1. The time cost of AHC, AP, and SAP

4.3. Run-time ef ciency

From Table 2, it can be seen that AHC takes more execution time
on the whole test set than AP and SAP, and k-means takes the least
execution time. AHC begins with the calculation of the distances
between clusters and needs to update the distances between the clus-
ters and the new cluster. AP and SAP take a different approach,
the similarities in which are computed only once. Then the proce-
dures of both two methods go on with known similarities. However,
k-means only needs iterative computation of the distances between
each speech segment and the cluster centers. In practice, both the
number of centers and the number of iterations are generally much
less than the number of segments. We can see that AP and SAP have
faster speed than AHC, and k-means usually has the fastest process-
ing speed in the four methods.

Figure 1 provides the time cost of speaker clustering through
AHC, AP, and SAP with different numbers of segments. The ex-
ecution time of k-means is affected by the choice of initial cluster
centers which in uences the number of iterations, so the execution
time of k-means is not given in Figure 1. However, k-means gen-
erally has the fastest speed in the four algorithms. We run the test

on a series of data sets which contain from 40 to 150 segments. It
can be observed that the execution time of the three algorithms in-
creases with the number of speech segments, but the execution time
of both AP and SAP is less than AHC when the number of segments
is larger than 70, and our experiment results show that the run-time
on the whole test set of both AP and SAP is less than AHC.

5. CONCLUSION

In this paper, we introduce the af nity propagation algorithm into
our speaker clustering system and present a supervised speaker clus-
tering approach named SAP which aims at processing real-world
media with known number of speakers. Af nity propagation is an
effective method which is suitable for the situation of unknown num-
ber of speakers. The proposed SAP approach, which is an improved
approach based on af nity propagation, works with given number of
speakers. We utilize SAP to cluster speech segments in telephone
conversations, each of which has two speakers and the experiment
results show that it can be well applied to the task of supervised
speaker clustering.

6. REFERENCES

[1] D. Liu and F. Kubala, “Online speaker clustering,” Proc.
ICASSP’03, vol. 1, pp. 333–336, 2003.

[2] T. Stadelmann and B. Freisleben, “Fast and robust speaker
clustering using the earth mover’s distance and mixmax mod-
els,” Proc. ICASSP’06, vol. 1, pp. 989–992, 2006.

[3] H. Jin, F. Kubala, and R. Schwartz, “Automatic speaker clus-
tering,” Proc. DARPA Speech Recognition Workshop, pp. 108–
111, 1997.

[4] W. Wang, P. Lv, Q.W. Zhao, and Y. Yan, “A Decision-Tree-
Based Online Speaker Clustering,” LECTURE NOTES IN
COMPUTER SCIENCE, pp. 555–562, 2007.

[5] A.N. Iyer, U.O. Ofoegbu, R.E. Yantorno, and B.Y. Smolenski,
“Blind speaker clustering,” Proc. ISPACS’06, pp. 343–346,
2006.

[6] J. Ajmera and C. Wooters, “A robust speaker clustering algo-
rithm,” IEEE ASRU Workshop, pp. 411–416, 2003.

[7] C. Barras, X. Zhu, S. Meignier, and J.L. Gauvain, “Improving
speaker diarizaton,” Proc. DARPA RT04, 2004.

[8] H. Aronowitz, “Trainable speaker diarization,” Proc. INTER-
SPEECH’07, pp. 1861–1864, 2007.

[9] D.A. Reynolds and P. Torres-Carrasquillo, “Approaches and
applications of audio diarization,” Proc. ICASSP’05, vol. 5,
pp. 953–956, 2005.

[10] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classi cation,
Wiley-Interscience, 2000.

[11] B.J. Frey and D. Dueck, “Clustering by Passing Messages Be-
tween Data Points,” Science, vol. 315, no. 5814, pp. 972–976,
2007.

[12] B.J. Frey and D. Dueck, “Supporting online material for clus-
tering by passing messages between data points,” 2007.

[13] A. Solomonoff, A. Mielke, M. Schmidt, and H. Gish, “Cluster-
ing speakers by their voices,” Proc. ICASSP’98, pp. 757–760,
1998.

[14] J. Ajmera, H. Bourlard, I. Lapidot, and I. McCowan,
“Unknown-multiple speaker clustering using hmm,” Proc. IC-
SLP’02, pp. 573–576, 2002.

4372

