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ABSTRACT

This paper addresses the problem of speaker diarization in the spe-
cific context of meeting room recordings. Some new enhancements
to the E-HMM-based speaker diarization system are reported. These
involve a different approach to speaker modelling utilising EM/ML-
based training rather than MAP adaptation as in our previous work.
Using the new system we investigate the effects of speech activity
detection through speaker diarization experiments conducted on 23
meetings extracted from the NIST/RT evaluation campaign datasets.
We propose a new approach, which assigns confidence values ac-
cording to the type of information carried by the signal and incorpo-
rates these values directly into the speaker diarization system. Ex-
perimental results show that, perhaps surprisingly, the non-speech
segments do not systematically affect the robustness of the speaker
diarization system, and more precisely the speaker model training
process.

Index Terms— speaker diarization, meeting rooms, confidence
values, speaker recognition

1. INTRODUCTION

The speaker diarization task, also known as the “Who spoke When?”
task, aims to detect the speaker turns within an audio document (seg-
mentation task) and to group together all the segments belonging to
the same speaker (clustering task). Involved as a main task in the
Rich Transcription evaluation campaigns administered by the Na-
tional Institute of Standards and Technology (NIST), for the last
few years speaker diarization research has focused on meeting room
recordings, now considered to be the most challenging task. Meeting
room recordings often involve a high degree of spontaneous speech
with large overlapping speech segments, speaker noise (laughs, whis-
pers, coughs, etc.) and very short speaker turns. Due to the avail-
ability of many different recording devices and room layouts, a large
variability in signal quality has brought an additional level of com-
plexity to the speaker diarization task and more generally to the RT
domain. As a necessary step for speaker diarization, speech activity
detection is also challenging in this specific context, due to the in-
herent variability in signal quality. Recently particular emphasis has
been placed on the detection of overlapping speech, one of the main
characteristics of spontaneous speech, and consequently of meeting
room recordings. There is, however, little published research on this
topic [1, 2, 3], probably somewhat due to the difficulty of the task.
Recently the authors proposed an experimental framework [3], aimed
at assessing the impact of speech activity detection and overlap-
ping speaker segments on a state-of-the-art speaker diarization sys-
tem. Experiments outlined interesting behaviours of the speaker di-
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arization system, demonstrating greater sensitivity to the “shape” (in
terms of number and length of segments) of the initial segmentation
(speech/non-speech segmentation or cleaned of overlapping speech),
than to the quality (even with a perfect, errorless segmentation). The
authors also outlined the difficulties in supporting one interpretation
regarding the effects of speech activity detection and overlapping
speech on speaker diarization performance. The paper concluded by
proposing an alternative approach which should utilise confidence
values according to the type of information (i.e. speech/non-speech),
and incorporate these values directly into the speaker diarization sys-
tem.
This paper reports such an alternative approach and presents a new
investigation into the impact of speech activity detection on speaker
diarization. The paper is organised as follows: Section 2 describes
the speaker diarization system and modifications involving EM/ML-
based speaker training. Section 3 presents the proposed confidence
value-based approach. Section 4 defines the experimental protocol
followed by the experimental results given in Section 5. Finally,
Section 6 draws some conclusions and proposes some future work.

2. SPEAKER DIARIZATION SYSTEM

Whilst still based on the Evolutive-HMM (E-HMM), the LIA speaker
diarization system employed in this paper differs from that utilised in
[2, 3]. The main variations lie (i) in the training algorithm involved
with speaker modelling for the segmentation step, and (ii) on the
related selection approach, which has been simplified as described
below. The diarization system, developed using the open source AL-
IZE speaker recognition toolkit [4], involves 3 main steps:
• speech activity detection (SAD),
• speaker segmentation and clustering, and
• resegmentation,
in addition to some preprocessing to accommodate multiple chan-
nels.

2.1. Multi-channel handling

The speaker diarization task involved in this paper relates to multiple
distant microphones located on meeting room tables (MDM task of
the NIST/RT evaluation plans [5]). To deal with this task, a single
virtual channel is formed using the BeamformIt 2.0 toolkit1 with a
500 ms analysis window and a 250 ms frame rate.

2.2. Speech Activity Detection

The speech activity detection (SAD) algorithm employs feature vec-
tors composed of 12 un-normalised Linear Frequency Cepstrum Co-

1Available at: http://www.icsi.berkeley.edu/xanguera/beamformit
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efficients (LFCCs) plus energy augmented by their first and sec-
ond derivatives. It utilises an iterative process based on Viterbi de-
coding and model adaptation applied to a two-state HMM, where
the two states represent speech and non-speech events and are ini-
tialised with a 32-component GMM trained on separate data using
an EM/ML algorithm. State transition probabilities are fixed to 0.5.
Finally, duration rules are applied in order to refine the speech/non-
speech segmentation yielded by the iterative process.

2.3. Speaker segmentation and clustering

This step is the core of the LIA speaker diarization system. It relies
on a one-step segmentation and clustering algorithm in the form of
an Evolutive Hidden Markov Model (E-HMM) [6]. Each E-HMM
state aims to characterise a single speaker and the transitions repre-
sent the speaker turns. Here the signal is characterised by 20 LFCCs,
computed every 10 ms using a 20 ms window. The cepstral features
are augmented by energy but no feature normalisation is applied.

As detailed in [3], the segmentation process begins by initializ-
ing the HMM with only one state representing the entire audio show.
An iterative process is then started where a new speaker is added
at each iteration. Successive Viterbi decoding and speaker model
training loops attribute speech segments to the different speakers in-
volved in the E-HMM. This iterative process is performed until a
stop criterion is reached, which here is based on the ability, or not,
for a new speaker to be added to the E-HMM.

Two main modifications have been introduced to the system com-
pared with previous work. The first change relates to the iterative
process involving the Viterbi decoding and the speaker model train-
ing. The speaker model adaptation techniques utilised in previous
work have been replaced with EM/ML (Expectation - Maximiza-
tion / Maximum Likelihood) based speaker model training. Speaker
model training is widely used by speaker diarization systems, espe-
cially in the first speaker segmentation and clustering steps, when
distance-based or criterion-based measurements are involved. Here,
GMM-based speaker models are utilised, with 16 Gaussian compo-
nents (diagonal covariance matrix) for all the HMM states, except
for the last one for which only 8 Gaussian components are estimated.
The difference in the number of Gaussian components aims to bal-
ance the different amounts of data attributed to the last speaker com-
pared with the others. If sufficient data is available to estimate GMM
speaker models, EM/ML is assumed to be more reliable than speaker
model adaptation techniques (such as MAP adaptation) especially in
the case of multi-speaker segments. Indeed, for the segmentation
step, it is usual to process segments involving one or more speak-
ers (due to the initialisation steps, classification errors, overlapping
speech, etc.). Adaption with speech segments involving multiple
speakers may significantly distort the resulting speaker model and
consequently the overall speaker diarization process. The effect is
even more pronounced when a strong adaptation weight is used for
the speaker data (because of the small amount of available speaker
data) compared with that used for the a priori data.

The second modification is directly linked to the use of the EM/-
ML algorithm for speaker model training in the segmentation pro-
cess. As mentioned above, sufficient data must be available for
speaker model estimation with the EM/ML algorithm. For any newly
detected speaker the amount of training data may be particularly low
at the beginning of the iterative training process as well as for subse-
quent iterations, depending on the degree of detected speaker activ-

ity. In previous work, different strategies have been proposed to se-
lect initial speech segments used to add a new speaker: a maximum
likelihood criterion [6], a criterion based on the maximum likeli-
hood ratio [2], and a maximum likelihood criterion coupled with a
pre-processing turn detection and local clustering [3]. Whilst the
constraints are relaxed with successive Viterbi decoding and speaker
model training iterations, all selection strategies were constrained to
utilise fixed-size segments (3 or 6 seconds depending on the strate-
gies) in order to limit multi-speaker segments during model initiali-
sation. However, such limited segment sizes are not appropriate for
the EM/ML algorithm thus a new strategy has been introduced and
here we select the largest speech segment available (with a minimum
size fixed to 6 seconds). This strategy is quite simple, but rather
different from the previous ones. Here no effort is made to con-
trol the number of speakers present in the selected segments since
their duration may vary greatly. This approach is inspired by other
speaker diarization systems such as the ICSI system [7] for which
speaker models are trained on large segment clusters, resulting in
very good performance. Such large initial segments allow the use of
the EM/ML algorithm to estimate speaker models, even for the first
iteration of the process.

2.4. Resegmentation

The segmentation stage is followed by a resegmentation step, used to
refine the segmentation outputs. An HMM is generated from the seg-
mentation output and an iterative speaker model training/Viterbi de-
coding loop is launched. In contrast to the segmentation stage, here
MAP adaptation (coupled with a generic speech model) replaces the
EM/ML algorithm for speaker model estimation since the segmen-
tation step provides an initial distribution of speech segments among
the different speakers detected. For the resegmentation process, all
the boundaries (except speech/non-speech boundaries) and segment
labels are re-examined.

3. CONFIDENCE VALUE-BASED APPROACH

This paper investigates an alternative approach to speaker diariza-
tion, suggested in previous work [3], to deal with non-speech and
overlapping segments or, more generally, to deal with segments where
the confidence in their content is low. This approach assigns confi-
dence values depending on the type of information carried by the
signal (and detected by the pre-processing), and incorporates these
values directly into the speaker diarization system. Here, confidence
values are estimated for each frame (even if all the frames of a seg-
ment are assigned the same confidence value) and are utilised in the
speaker model training during both the segmentation and resegmen-
tation steps described in Section 2.

Training and confidence value: Regarding the EM/ML algorithm,
the following parameter reestimation formulae are used for each iter-
ation [8] given λ, an M -component GMM, characterised by pi, μi, Σi

(i = 1, ..., M ), which denote the mixture weights, mean vectors and
covariance matrices respectively for Gaussian component i trained
on a sequence of T D-dimensional vectors X = x1, ..., xT :

p̄i =
1

T

TX
t=1

p(i|xt, λ) (1)

μ̄i =

PT
t=1 p(i|xt, λ)xtPT

t=1 p(i|xt, λ)
(2)
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σ̄i =

PT
t=1 p(i|xt, λ)xtPT

t=1 p(i|xt, λ)
− μ̄2

i (3)

with

p(i|xt, λ) =
pibi(xt)PM

k=1 pkbk(xt)
(4)

and

bi(xt) =
1

(2π)D/2|Σi|1/2
exp

»
−1

2
(xt − μi)

′Σ−1
i (xt − μi)

–

(5)
Considering now wt as the confidence value assigned to observation
xt, Equation 4 can be rewritten as:

p(i|xt, λ) =
wtpibi(xt)PM
k=1 pkbk(xt)

(6)

4. EXPERIMENTAL PROTOCOL

Meeting corpora:
The experiments reported in this paper were conducted on 23 meet-
ing files extracted from the datasets of the 2004, 2005 and 2006
NIST RT evaluation campaigns (conference sub-domain) [5]. These
data sets include meeting excerpts from 10 to 18 minutes, recorded
at 7 different sites. The number of meeting participants varies from
4 to 9. In the same manner, rooms are equipped differently, involv-
ing various kinds of acquisition/recording devices. A signal file is
provided for each microphone located in a meeting room. In this pa-
per, the focus is made on the distant table microphones (MDM task
defined by NIST).

Performance measurement:
The performance of the speaker diarization system is expressed in
terms of the Diarization Error Rate (DER in %) [5], which mea-
sures, in combination, both the quality of the speech activity detec-
tion (through the missed speaker error rate, denoted Mis and the
false alarm speaker error rate, denoted FA) and the speaker diariza-
tion (through the speaker error rate, denoted Spk). For all experi-
ments, the DER is computed over all speech, excluding overlapping
speech (as specified by NIST until the RT’06 evaluation), although
overlapping speech has been taken into account in the speaker di-
arization process.

5. EXPERIMENTAL RESULTS

In this section, we present experiments and results based on the con-
fidence value-based approach presented in Section 3. Different sets
of experiments examine the effect of the approach, through speaker
diarization performance, focusing on one type of information: non-
speech segments. Diarization performance using the EM/ML algo-
rithm and the new selection strategy is also presented.

5.1. Speaker model training

This paper proposes a new implementation of the segmentation pro-
cess, based on the EM/ML algorithm for the speaker model train-
ing instead of the MAP-based adaptation technique used in previous
work. Table 1 compares speaker diarization system performance for
both implementations. This comparison is given individually for the
segmentation and resegmentation steps. The missed and false alarm
speaker error rates, common for both implementations, are also pro-
vided.

SAD (%) EM/ML (%) MAP (%)

All meetings Mis. FA Spk. DER Spk. DER

Segmentation step 1.2 2.8 17.6 21.5 29.9 33.8

Resegmentation step 1.2 2.8 12.2 16.1 15.3 19.2

Table 1. Overall speaker diarization performance, in terms of % DER, for
EM/ML and MAP-based implementations.

Performance reached after the segmentation step highlights the effi-
ciency of the EM/ML algorithm in coping with the issues relating to
the E-HMM framework, compared with the MAP-based adaptation.
The MAP adapted speaker models are less robust and lead to coarse
segmentation outputs. However, the difference is largely decreased
after the resegmentation step, where only 3% absolute difference is
observed between both implementations. The EM/ML-based imple-
mentation exhibits the best performance.

5.2. Non-speech effects

In this set of experiments, different confidence values are attributed
to the non-speech segments, varying from 0.1 to 1.0 for each exper-
iment, whereas the confidence value assigned to speech segments
is fixed to 1.0 for all experiments. Two conditions are examined:
(1) an automatic speech/non-speech segmentation (issued from the
automatic SAD) and (2) a manual segmentation (coming from the
references).

Table 2 summarises the speaker diarization performance obtained
for these experiments under both conditions for the 23 meeting files.
For clarity, only the worst and the best DER (denoted “Worst weight”
and “Best weight” respectively in the table), depending on the confi-
dence value considered (given in parentheses), are presented. The
DER of the baseline speaker diarization system (denoted as “No
weight” since non-speech segments are discarded from the speaker
diarization process) is also provided for comparison.

Regarding condition (1), Table 2 shows that the best perfor-
mance (in boldface) is reached for 70% of meetings with the fixed
confidence values exhibiting the best DER (“Best weight”), against
only 30% with the baseline system (“No weight”). Moreover, it can
be observed that the fixed confidence values vary greatly depending
on the meeting (from 0.1 to 1.0). Nevertheless, regarding the “Best
weight” results only, the best DER is obtained for 61% of meetings
with confidence values equal to or greater than 0.5, the overall best
DER being reached with the confidence value fixed to 1.0. In a sim-
ilar manner, regarding the “Worst weight” results only, the worst
DER is also reached for 61% of meetings with a confidence values
equal to or greater than 0.5. Even though these results demonstrate
quite large variability in terms of DER performance and confidence
values, it is interesting to underline some specific observations:
(1) low confidence value (< 0.5) for the “Worst DER” vs high con-
fidence value (≥ 0.5) for the “Best DER”: 6 meetings fall into this
category, which suggests that integrating non-speech segments into
the speaker model training with a high weight can improve speaker
diarization robustness.
(2) low confidence value for the “Best DER” vs high confidence
value for the “Worst DER”: representing 4 meetings. The significant
DER differences observed in this case show that introducing non-
speech segments into the training scheme can disturb the robustness
of speaker models.
(3) stationary DER between the “Worst DER” and the “Best DER”:
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representing 5 meetings for which the DER is relatively insensitive
to the confidence value across the full range considered (not reported
here). In these cases the presence of non-speech segments in the
training process does not affect speaker model reliability. The re-
maining meetings exhibit a large variability, in terms of DER, ac-
cording to the different confidence values used.

Regarding condition (2), Table 2 shows that the best perfor-
mance (in italics) is reached for 74% of meetings with the fixed con-
fidence values exhibiting the best DER (“Best weight”), against 26%
with the baseline system (“No weight”). Here, 52% of meetings with
a confidence value equal to or greater than 0.5 achieve the best DER
(“Best weight”), the overall best DER still being obtained with the
confidence value fixed to 1.0. Similar behaviour is observed for the
“Worst weight” case.

These results show that, perhaps surprisingly, it is not neces-
sarily the case that non-speech segments have systematically nega-
tive effects on the speaker diarization process and more precisely on
the robustness of speaker models. The impact is variable depending
on the meeting. Consequently, it can be assumed that even if the
speech activity detection is not perfect (though giving satisfactory
performance), it does not necessarily impact upon speaker model
robustness in the specific context of meeting recordings. This ob-
servation is highlighted by the EDI 20050216 meeting for which a
DER improvement from 48.2% (baseline) to 30.2% is reached with
a confidence value of 0.5 assigned to manually labelled non-speech
segments. With the EDI 20050218 meeting an improvement from
13.9% to 9.9% is achieved with a confidence value fixed to 1.0 and
with the V T 20050304 meeting an improvement from 17.2% to
2.2% is obtained with a confidence value fixed to 0.4.

6. CONCLUSIONS

This paper investigates the effects of speech activity detection on
speaker diarization in the context of meeting room recordings. To-
gether with some modifications made to our previously reported sys-
tem, the paper presents an original approach, which assigns frame-
based confidence values according to the type of information carried
by the signal (speech, non-speech, overlapping speech) and incorpo-
rates these values into the speaker model training scheme involved
in the speaker diarization process.

A large set of experiments, conducted on 23 meetings extracted
from the NIST/RT evaluation campaign datasets highlight that by
assigning fixed confidence values (varying from 0.1 to 1.0) to non-
speech segments, high confidence values do not systematically affect
speaker model robustness since for 70% of meetings, improvements
in speaker diarization performance are observed with confidence val-
ues equal to or greater than 0.5, compared to the baseline system.
Consequently, speaker diarization errors should not necessarily be
attributed to non-speech misclassification. Further work aims to bet-
ter understand this rather surprising behaviour by measuring speaker
model quality along the speaker diarization process. Similar experi-
ments will be conducted on overlapping speech segments in order to
examine their effects in the same manner.
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