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ABSTRACT

State-of-the-art speaker diarization systems for meetings are
now at a point where overlapped speech contributes signifi-
cantly to the errors made by the system. However, little if no
work has yet been done on detecting overlapped speech. We
present our initial work toward developing an overlap detec-
tion system for improved meeting diarization. We investigate
various features, with a focus on high-precision performance
for use in the detector, and examine performance results on a
subset of the AMI Meeting Corpus. For the high-quality sig-
nal case of a single mixed-headset channel signal, we demon-
strate a relative improvement of about 7.4% DER over the
baseline diarization system, while for the more challenging
case of the single far-field channel signal relative improve-
ment is 3.6%. We also outline steps towards improvement
and moving beyond this initial phase.

Index Terms— speaker diarization, overlap detection

1. INTRODUCTION

The presence of overlapped, or co-channel, speech in meet-
ings is a common occurrence and a natural consequence of
the spontaneous multiparty conversations which arise within
these meetings. This speech, in addition, presents a signifi-
cant challenge to automatic systems that process audio data
from meetings, such as speech recognition and speaker di-
arization systems. In the case of speaker diarization, current
state-of-the-art systems assign speech segments to only one
speaker, thus incurring missed speech errors in regions where
more than one speaker is active. For these systems, such as
our own ICSI Diarization System [1], this error may represent
a significant portion of the diarization error. For example, in
previous RT diarization evaluations, up to 43% relative of the
ICSI system diarization error consisted of missed speech er-
rors due to overlap.
To be certain, it is only recently that diarization error rates

of systems have been reduced to the point that a large portion
of the remaining error is due to overlap. As a result, little
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work has been done on addressing the issues posed by the
phenomenon. Some studies have been reported about the ef-
fects of overlap in meetings (e.g.,[2],[3],and [4]), but work
on systems for identifying overlapped speech and mitigating
its effects in speaker diarization appear to be absent from the
literature. As overlapped speech is now a major obstacle in
improving the performance of speaker diarization systems,
efforts in overlap detection will be of increasing interest and
importance.
With this view, we present in this paper our initial efforts

toward addressing overlapped speech in automatic speaker di-
arization. This consists of an overlap detection system along
with a segment post-processing procedure for the segmenta-
tion generated by the speaker diarization system. The overlap
detector is an HMM-based segmenter that operates using fea-
tures tailored for the task while the post-processing procedure
is a speaker assignment method for the identified overlap seg-
ments based on speaker posterior probabilities produced by
the diarization system.
As with any detection scheme, the overlap system is sus-

ceptible to errors of two types: false alarms and misses. These
errors impact the diarization system quite differently, with
false alarms carrying through to increase the diarization false
alarm error and misses having no effect on the baseline di-
arization error. Because of this difference, the overlap detec-
tor is optimized for low false alarms, which corresponds to a
high precision (and possibly low recall) operating point.
The remainder of this paper is organized as follows. The

diarization system is briefly described in Section 2 and the
HMM-based segmenter along with the segmenter features
are described in Section 3. The diarization segment post-
processing procedure is detailed in Section 4 and we present
results on AMI development data in section 5. Finally, con-
clusions and future work are given in Section 6.

2. THE ICSI DIARIZATION SYSTEM

The goal of speaker diarization is to segment audio into
speaker-homogeneous regions, ultimately to answer the ques-
tion, “Who spoke when?”. In the ICSI diarization system,
as with most state-of-the-art systems, this is accomplished
through agglomerative clustering of segments with merging
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based on Bayesian Information Criterion (BIC) scores. These
scores are computed using GMMs of frame-based cepstral
features (MFCCs). The clustering approach starts with a
large number of initial clusters and proceeds by an iterative
procedure of merging, model re-training and re-alignment.
In the merging step, a BIC-based merge score is calculated
between each two candidates. This measurement is then used
to determine which two clusters should be merged or whether
the merge should terminate. One major innovation of the sys-
tem is the elimination of the tunable parameter in this merging
procedure by ensuring that, for any given BIC comparison,
the difference between the number of free parameters in the
two hypotheses is zero. The system is described fully in [1].
System performance is measured using the diarization er-

ror rate (DER). This is defined as the sum of the false alarm
(falsely identifying speech), missed speech (failing to iden-
tify speech), and speaker error (incorrectly identifying the
speaker) times, divided by the total amount of speech time
in a test audio file. Because the system presently can assign
only a single speaker label to a segment, missed speech er-
rors from speaker overlap persist and cannot be reduced. And
since these errors presently constitute a substantial portion of
the diarization error, overlap detection is an important next
step in improving system performance.

3. HMM-BASED OVERLAP SEGMENTER

3.1. HMM architecture

To detect overlapped speech, we use an HMM-based over-
lap segmenter. The segmenter consists of three classes—
nonspeech, speech, and overlapped speech—each being rep-
resented with a three-state model. State emission proba-
bilities are modeled using a multivariate Gaussian Mixture
Model (GMM) with 32 components and diagonal covariance
matrices. For each class HMM, mixtures are shared between
the three states, with separate mixture weights for each state.

3.2. Training

The class GMMs are trained using an iterative Gaussian split-
ting technique with successive re-estimation. The training
starts with a single Gaussian and doubles the number of Gaus-
sians at each iteration until the final mixture of 32 is ob-
tained. Model re-estimation occurs at the end of each iter-
ation. Speech, nonspeech, and overlap regions are identified
in the training data using ASR forced-alignment times gener-
ated from ground-truth transcriptions of the audio.

3.3. Testing

Test audio signals are segmented into regions labeled as one
of the three classes using a single Viterbi decoding pass of the
full channel waveform. The speech and nonspeech classes are
then considered a single “non-overlap” class and the overlap

regions obtained are scored against reference overlap regions
(again identified using forced-alignment). To measure seg-
mentation performance in isolation (i.e., independent of im-
provements to the diarization system) we use precision, recall,
and F-score values computed based on false alarm, missed de-
tection, and total overlapped speech times.
As previously stated, we desire a low false alarm rate,

and thus high precision, overlap detection system. This is
achieved by adjusting the transition penalty from the speech
to the overlap class in the Viterbi decoding. The penalty is de-
termined by a parameter which is tuned using held-out data.

3.4. Overlap Detection Features

A key consideration in the overlap detection system is the
selection of features used in the HMM-based segmenter.
We have explored about 40 features (prosodic, short-term,
long-term, etc.) and list below those that yielded the best
performance in our experiments. The features were com-
puted over sliding windows (with window sizes stated below)
advanced by 20ms.

Baseline MFCCs
The baseline features used consist of 12th-order Mel-fre-
quency cepstral coefficients (MFCCs) along with first dif-
ferences. Cepstral mean subtraction (CMS) is performed
as a waveform-level normalization. MFCCs are common
to various speech-related tasks (speech recognition, speaker
recognition, speaker diarization, etc.) and as such served as
a natural baseline feature for the system. The MFCCs were
computed over a window of 60ms.

RMS energy (Eg)
The energy content of a speech segment will likely be af-
fected by the presence of additional speakers; specifically, we
anticipate that overlapped speech will have a higher energy
content than single-speaker speech in general. The short-
time root-mean-squared (RMS) energy was computed over
a window of 20ms. To compensate for potential channel
gain differences, signal waveforms were normalized based on
overall RMS channel energy estimates.

LPC residual energy (LPC)
The linear predictive coding (LPC) coefficients of a speech
signal encode the formants of a speaker while the residual
signal represents the portion of the speech signal that cannot
be attributed to this formant model—typically the excitation
source. In the case of more than one speaker, a fixed-order
LPC representation will not be able to model the spectrum
(shaped by formants of multiple speakers) well. This po-
tentially leads to more energy content in the residual signal.
12th-order LPC residual energy values were computed over a
window of 25ms.
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Diarization posterior entropy (DPE)
Using frame-level speaker likelihoods from the diarization
system, we compute the posterior probability for each speaker
on every frame and subsequently a frame-level entropy from
these posteriors. To reduce the effects of noise in the posterior
values, we filter these probabilities with a 500ms Hamming
window. In single-speaker regions we expect one model to
have the highest probability and the remainder to have sig-
nificantly lower values. In overlap segments, however, there
should be lower, more evenly distributed probabilities among
the overlapping speakers and, as a result, the entropy should
be higher.

4. DIARIZATION SEGMENT POST-PROCESSING

Having identified regions of overlapped speech, this informa-
tion can then be used to modify segment and label information
output by the diarization system. The procedure is as follows.
In an overlapped segment, the frame-level speaker posteriors
mentioned in Section 3.4 are summed over the frames of the
segment to obtain a single “score” for each speaker. Typically
the diarization system will have assigned the segment to the
speaker with the highest score, in which case the speaker with
the second highest score is chosen as the other speaker. In the
event that the system has chosen another speaker, then this
highest scoring speaker is selected as the additional speaker.
Note that this procedure limits the number of possible over-
lapping speakers to two, but that two-speaker overlap typi-
cally comprises 80% or more of the instances of overlapped
speech. A diagram of the final system is shown in Figure 1.

Fig. 1. Diagram of integrated overlap detector and diariza-
tion system.

5. RESULTS ON AMI DEVELOPMENT SET

Experiments evaluating the overlap detection system were
performed using audio data from the AMI Meeting Corpus.
The data consisted of 16 kHz-sampled single-channel signals,
one per meeting, from the IDIAP subset (‘IS’ meetings) of the
corpus. This subset comprises 38 meetings, each involving

four participants engaged in a scenario-based meeting rang-
ing in duration from 13 to 40 minutes. The meetings contain
approximately 18% overlapped speech. Of the 38 meetings,
12 were used for test as in [5], 22 used for training and 4 were
used as a development set for tuning parameters.

Near-field mixed-headset results
As a first step, experiments were performed using high-
quality single-channel signals obtained by mixing the audio
signals from the four individual headset channels in each
meeting. This was done to facilitate the development of the
system and the feature selection process, as well as to de-
termine an upper limit to the performance of any far-field
system. This is analogous to the meeting speech recognition
task, where the near-field recognition condition provides a
performance bound for the far-field one.

Table 1. Performance comparisons for systems using AMI
development data and near-field audio data.

System Prec. Rec. F-score DER
Baseline Diarization - - - 32.28
MFCC+Δ 0.7 0.27 0.39 30.84
MFCC+Eg+LPC+DPEΔ 0.72 0.25 0.37 30.46
MFCC+DPE+Δ 0.73 0.32 0.45 30.13
MFCC+Eg+DPE+Δ 0.76 0.34 0.47 29.90

The results for various systems are given in Table 1, with
the best overall system appearing in the last row. The pre-
cision, recall, and F-score values are for the overlap detector
in isolation while the DER refers to the diarization system
performance after post-processing using the identified over-
lap segments. The first row, “Baseline Diarization”, gives
the baseline performance of the diarization system without
the use of overlap information. It should be noted that refer-
ence speech/nonspeech information was used in the diariza-
tion system so as not to confound the false alarm error contri-
butions of the speech/nonspeech detector, which is presently
an independent system, with those of the overlap detector (see
below).
From the results we see that, for this simplified case,

the overlap detector indeed improves the diarization system.
In addition, a strong correlation between improved over-
lap detection precision and reduced DER for the diarization
system exists, as we anticipated. Lastly, the best feature
combination—MFCCs, RMS energy, diarization posterior
entropy, and first differences—yields a DER reduction of
2.38%, a relative improvement of about 7.4%.

Far-field results
Having demonstrated system functionality using the mixed-
headset signals, we subsequently conducted experiments for
the more realistic scenario of single-channel far-field micro-
phone signals. In this case the overlap detector must contend
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with a poorer signal-to-noise (SNR) ratio as well as convo-
lutive effects from room responses. The results for various

Table 2. Performance comparisons for systems using AMI
development data and far-field audio data.

System Prec. Rec. F-score DER
Baseline Diarization - - - 38.11
MFCC+Δ 0.54 0.15 0.24 38.09
MFCC+Eg+LPC+DPE+Δ 0.61 0.33 0.42 37.26
MFCC+DPE+Δ 0.64 0.31 0.42 36.83
MFCC+Eg+DPE+Δ 0.66 0.26 0.37 36.75

systems are given in Table 2 and are presented in the same
fashion as Table 1. Observe that the performance of the
system degrades significantly owing to far-field conditions.
Nevertheless, reductions in DER are made by the overlap de-
tector in this case as well. The best feature combination—the
same one as in the near-field case—yields a DER reduction
of 1.36%, a relative improvement of about 3.6% over the
baseline. Lastly, here, too, we see the correlation between
precision and DER reductions.

Error analysis
As mentioned in Section 2, the DER is composed of false
alarm (FA), missed speech (MS), and speaker errors (SE).
By decomposing the DER into its constituent errors we can
better analyze the effect of the overlap system. Table 3 gives
a breakdown of the DER for the baseline and best perform-
ing systems for both the near-field and far-field conditions.
Observe the baseline false alarm rate of zero in both cases;
this is due to the use of reference speech activity regions.
The overlap detection system introduces false alarm errors in
both cases, though the number is small due to the relatively
high precision. The effectiveness of the overlap segmenter
is shown clearly in the reduction of the missed speech er-
ror. In addition, the small increase in speaker error indicates
the post-processing speaker assignment algorithm is largely
effective as well.

Table 3. Breakdown of diarization error rate for baseline and
best overlap-detecting diarization systems. Error measures
consist of false alarm (FA), missed speech (MS), and speaker
error (SE).

Near-field Far-fieldSystem
FA MS SE FA MS SE

Diarization 0.0 18.3 14.0 0.0 18.3 19.8
+ Overlap detection 1.4 13.5 14.9 1.8 14.6 20.3

6. CONCLUSIONS AND FUTUREWORK

In this paper we have motivated the need for overlapped
speech detection in the speaker diarization task and have
described our first efforts toward developing a system to per-
form this detection. In the case of near-field mixed-headset
audio we obtained a 7.4% relative improvement in DER for
the diarization system, while for the more challenging far-
field case a 3.6% relative improvement was obtained. In
both cases we observed the importance of a high-precision
detector in achieving improvements.
As this work represents the beginning of the system

development—and of the overall effort in automatic speaker
overlap detection—the potential amount of future work is
considerable. There are, however, a few key directions we
intend to pursue. One is to continue to identify features useful
to overlap detection, with a particular emphasis on robustness
to environmental variations—a major concern in the meetings
domain. Another is using speech and nonspeech detection in-
formation from the segmenter to more fully integrate the
overlap detection and diarization systems; at present, the
diarization system uses a separate speech activity detector.
Lastly, we intend to investigate the possibility of using the
overlap detector in a diarization pre-processing step (added
to the post-processing step described above) to exclude over-
lapped speech from the training data to achieve purer speaker
models. The overlap detector may then be able to help reduce
not only missed speech errors, but speaker errors as well.
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