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ABSTRACT

We examine the task of spoken term detection in Chinese

spontaneous speech with a lattice-based approach. We first

compare lattices generated with different units: word, charac-

ter, tonal and toneless syllables, and also lattices converted

from one unit to another unit. Then we combine lattices

from multiple systems into a single lattice. By fully exploit-

ing the redundant information in the combined lattice with a

time-based node/arc merging, we achieve the result of a com-

pact lattice index with the accuracy improved to 79.2% from

73.9% using the best subsystem.

Index Terms— spoken term detection, keyword spotting,

lattice, system combination

1. INTRODUCTION

Improving accessibility for overwhelming amounts of speech

data available today necessitates the development of robust

Spoken Term Detection (STD, also known as keyword spot-

ting) and Spoken Document Retrieval (SDR) techniques.

However, speech data interesting for an STD or SDR task,

including online lectures, conversations, and voicemails, are

still a challenge for today’s speech-recognition technology,

which achieves word accuracies of only 50-70%. To deal

with the high recognition error rate, a lattice-based approach

has been widely used for SDR and STD tasks [1, 2, 3, 4, 5, 6],

which was found to improve the search accuracy significantly.

For English systems, both word-based lattices and pho-

netic lattices have been used. Usually, word-based sys-

tems provide better precisions than phonetic systems due

to stronger language models, but suffer from the Out-Of-

Vocabulary (OOV) problem, which phonetic systems can han-

dle nicely. Research [1, 3, 7] has also found combining the

two systems results in significant improvements.

The (Mandarin) Chinese language has a monosyllabic

structure, in which a closed set of syllables has satisfying vo-

cabulary coverage, and syllable ngrams provide reasonably

efficient language modeling. Most previous research [4, 6, 8]

have involved building syllable-based systems. In [5], word-

based lattices were converted and stored in a syllable-based

index. [9] proposed multi-scale indexing, and showed an

improvement by combining word-based transcriptions with

syllable-based lattices.

Our research examines lattice-based spoken term detec-

tion for Chinese spontaneous speech. Specifically, we com-

pare lattices generated with word and different sub-word units

(character, tonal and toneless syllables), and also discuss

methods to convert lattices generated with a higher-level unit,

i.e., more semantic-based like word, to a lower-level unit, i.e.

more phonetic-based like syllable. Some of the results have

already been presented in [10], while in this paper, we fuse

multiple systems by a lattice-level combination followed by a

time-based node/arc merging, and result in a compact lattice

index with a significantly better accuracy than all subsystems.

The rest of paper is organized as follows. Section 2 intro-

duces the lattice-based spoken term detection algorithm. Sec-

tion 3 describes the methods of lattice generation and conver-

sion. Section 4 discusses how to merge multiple lattices into a

compact lattice index. Section 5 shows the results and section

6 concludes the paper.

2. LATTICE-BASED SPOKEN TERM DETECTION

We first recapitulate the method of lattice-based spoken term

detection. A lattice L = (N ,A, nstart, nend) is a directed

acyclic graph (DAG) with N being the set of nodes, A being

the set of arcs, and nstart, nend ∈ N being the unique initial

and unique final node, respectively.

Each node n ∈ N has an associated time t[n] and possibly

an acoustic or Language-Model (LM) context condition. Arcs

are 4-tuples a = (S[a], E[a], I[a], w[a]). S[a], E[a] ∈ N de-

note the start and end node of the arc. I[a] is the word (or sub-

word) identity. Last, w[a] shall be a weight assigned to the arc

by the recognizer. Specifically, w[a] = pac(a)1/λ · PLM(a)
with acoustic likelihood pac(a), LM probability PLM, and

LM weight λ. 1 Normally the recognizer will also tell the

1Despite its name, the function of the LM weight is now widely consid-
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best pronunciation for each arc, when multiple pronunciations

exist for the word I[a].
In addition, we define a path π = (a1, · · · , aK) as a se-

quence of connected arcs, and use the symbols S, E, I , and

w for paths as well to represent the respective properties for

entire paths, i.e. the path start node S[π] = S[a1], end node

E[π] = E[aK ], label sequence I[π] = (I[a1], · · · , I[aK ]),
and total path weight w[π] =

∏K
k=1 w[ak].

It was found in [2] that an alternative but equivalent repre-

sentation of lattices, which we call posterior lattices, is more

convenient in many cases.

For the posterior lattice, we define the arc posteriors
Parc[a] and node posteriors Pnode[n] 2 as

Parc[a] =
αS[a] · w[a] · βE[a]

αnend

; Pnode[n] =
αn · βn

αnend

,

with forward-backward probabilities αn, βn defined as:

αn =
∑

π:S[π]=nstart∧E[π]=n

w[π] ; βn =
∑

π:S[π]=n∧E[π]=nend

w[π]

αn and βn can be conveniently computed using the well-

known forward-backward recursion, e.g. [11].

The posterior lattice representation stores four fields with

each edge: S[a], E[a], I[a], and Parc[a], and two fields with

each node: t[n], and Pnode[a].
In our previous work [12] it was shown that in a word

spotting task, ranking by the phrase posterior probability is

theoretically optimal. With the posterior lattice representa-

tion, the phrase posterior of query string Q is computed as

P (∗, ts, Q, te, ∗|O)

=
∑

π=(a1,··· ,aK ):
t[S[π]]=ts∧t[E[π]]=te∧I[π]=Q

Parc[a1] · · ·Parc[aK ]
Pnode[S[a2]] · · ·Pnode[S[aK ]]

. (1)

The posterior lattice representation is lossless. It has sev-

eral advantages as stated in [2]. In this paper, the posterior

lattice representation is needed by the lattice conversion and

system combination, which we will discuss later.

3. LATTICE GENERATION AND CONVERSION

In this section, we briefly describe how to generate lattices

with word and sub-word units, and how to convert lattices to

a different unit. A detailed description can be found in [10].

We use a same Large-Vocabulary Continuous Speech

Recognition (LVCSR) decoder to generate lattices with dif-

ferent base units: word, character, tonal and toneless syllable.

Trigram language models trained with different units are used

for corresponding recognizers. Result lattices are represented

as posterior lattices as described in section 2.

ered to flatten acoustic emission probabilities. This matters when sums of

path probabilities are taken instead of just determining the best path.
2In [1], a similar concept is implemented by weight pushing.

Converting word lattices to sub-word lattices (character

or syllable) involves an arc splitting process, as a word may

be split to multiple characters (or syllables). The process is

trivial with posterior lattices: replacing the word arc with a

sequence of connected sub-word arcs, with all the sub-word

arcs having the same arc posterior as the word arc, and equally

splitting the time period. Converting character lattices to syl-

lable lattices or tonal-syllable lattices to toneless-syllable lat-

tices is a simple label replacing operation on lattices.

Sometimes words and characters have multiple pronunci-

ations (polyphonies), thus the conversion to syllables is not

unique. In this case, the best pronunciation info for each arc

provided by the recognizer is used to determine the corre-

sponding syllables.

4. SYSTEM COMBINATION IN A COMPACT
LATTICE INDEX

[3] has shown that lattices generated with different recogniz-

ers contain complementary information and can be fused to

achieve better accuracy over each subsystem. In this section,

we will present a method to combine multiple lattices for bet-

ter accuracy, while the combined system can still be repre-

sented by a single compact lattice.

4.1. Lattice Combination

Let L1, · · · ,Ln denote lattices generated with different sub-

systems, Q being the query. [10] proposed to combine multi-

ple systems by a posterior combination:

PCOMB(∗, ts, Q, te, ∗|O) =
n∑

i=1

γi · P (∗, ts, Q, te, ∗|Li).

An equivalent representation of the above posterior com-

bination is the lattice combination, which combine all sub-

lattices Li into a single lattice by merging start nodes and

end nodes of all Li, and weighting arcs/nodes from Li by γi.

However, though in the form of a single lattice, the represen-

tation of the combined lattice is not really efficient as we still

need to store all arcs/nodes from all sub-lattices. There are

two-levels of redundant information in the combined lattice:

• within-lattice: In raw lattices generated by speech de-

coders, a single word (or sub-word) often has multiple

lattice arcs with different acoustic or LM context condi-

tions and slightly off time boundaries, this duplication

was found to be unnecessary for an STD task;

• cross-lattice: Lattices with the same base unit but

from different recognizers contain more or less similar

recognition alternatives in the same time period, which

becomes duplicated in the combined lattice.

To exploit these redundancies, we propose use of lattice

compression method presented in [2]: Time-based Merging

for Index (TMI), which we will explain below.
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4.2. Time-based Merging for Index (TMI)

The basic idea of TMI is to cluster lattice nodes with similar

times, and to approximate word hypotheses by arcs between

node clusters rather than individual nodes. The clustering cri-

terion is simple: two consecutive nodes can be clustered to-

gether unless that would create a loop (a hypothesis starting

and ending in the same clustered node); and among the man-

ifold of clusterings that satisfy this condition, the one leading

to the smallest number of clusters is considered the optimum

solution. It can be found using dynamic programming:

• sort nodes n1...nN in ascending time

• for each node ni, determine mi: the maximum node

that ni can be grouped with without causing a loop

• set cluster counts C0 ← 1; Ci ← ∞∀ i > 0
• set backpointers Bi ← ni ∀ i > 0
• for i = 1...N : // DP recursion

– for j = i...mi: if Ci−1 + 1 ≤ Cj :
∗ Cj ← Ci−1 + 1
∗ Bj ← i // cluster {ni...nj}

• k ← N ; while k �= 0: // trace back, merge nodes

– create new node cluster {Bk...nk}, relink arcs

– k ← Bk − 1

• merge arcs that connect the same two clusters with

same word by summing up their posteriors

We call this “Time-based Merging for Indexing,” as it effec-

tively clusters nodes with similar time points, although node

times are only used for node sorting. The process keeps all

phrases. It also introduces additional paths, but they are re-

stricted to not cause insertions or deletions of full words, and

our experiments show no loss of accuracy from false positives

(these random combinations are unlikely to be valid phrases

for which one could search).

When TMI is applied to the combined lattice in the pre-

vious section, it will not only merge nodes/arcs within sub-

lattices, but also merges across sub-lattices, i.e. both within-

lattice and cross-lattice redundancies are addressed.

5. EXPERIMENTAL RESULTS

5.1. Setup

We evaluate our method by a keyword-spotting task on a

4-hour long Chinese spontaneous dictation set. The phone

set contains 187 phones, with 28 “initial” (the Consonant)

phones, 157 tonal “final” (the Vowel) phones, and two silence

phones. There are a total of 1,666 tonal syllable and 423

toneless syllables [13]. An acoustic model trained on 154-

hour reading-style speech plus 148-hour spontaneous speech

is used for all setups. 39-dimension MFCCs are used. A dic-

tionary with 68,933 words is used for both the LVCSR rec-

ognizer and for the word breaker (which is used for query

processing). Trigrams with different units are all trained from

a text corpus containing about 2.1 billion characters.3

The baseline Word Error Rate (WER) of all recognizers is

shown in Table 1. To compare among different units, Char-

acter Error Rate (CER), Syllable Error Rate (SER) and tone-

less SER are listed as well. As expected, the word-based sys-

tem has the best error rates. Interestingly, the character-based

system is even worse than the tonal-syllable-based one. This

may be caused by polyphonies – characters with multiple pro-

nunciations. Normally a specific pronunciation of a character

corresponds to a specific meaning, which means the character

language model may not be as efficient as the syllable lan-

guage models.

Table 1. Accuracy of different recognizers (WER:word error

rate, CER: character error rate, SER: syllable error rate, all in

%)

recognizer unit WER CER SER Toneless SER

Word 48.43 36.98 35.38 30.81

Character – 42.90 41.33 35.90

Syllable – – 39.08 33.64

Toneless Syllable – – – 35.83

An automatic procedure as described in [14] was used

to select queries. Example queries are �� (spring festi-

val), ��� (Russia), ����� (Eiffel Tower). Re-

sults are reported in Figure of Merit (FOM), which is de-

fined by National Institute of Science and Technology (NIST)

as the detection/false-alarm curve averaged over the range of

[0...10] false alarms per hour per keyword. Lattice recalls (re-

calls of all query matches, which are upper bounds of FOMs)

are listed as well for the purpose of analysis.

5.2. Lattice Generation and Conversion

The first two lines of Table 2 compare the bestpath-only (S0)

approach versus a lattice-based (S1) approach for a word-

based system. With the high WER (48.4%), the bestpath has

a recall at only 51.5%, while using lattices increases the recall

to 71.2%, with the FOM improved to 69.2%.

Lines tagged with S2, S3, S4 list performances of lattices

generated with characters, tonal syllables and toneless sylla-

bles.4 Tonal-syllable-based lattices show the best FOM of

72.3% and recall of 76.0%, which indicates that tonal sylla-

bles are an efficient compromise between the language model

strength and the vocabulary coverage.

Table 2 also lists results for lattice conversion as tagged as

Sx.y. The results show that converting lattices from a higher-

3In [10], syllable trigrams were trained only on the dictionary. In this

paper, they are retrained on the LM training corpus, which achieves better

WERs and FOMs.
4The lattice recall is primarily a function of the beam setting in decoding.

However, as different systems have different perplexities, it is difficult to

fairly compare beam settings across systems. We tune each recognizer for

the maximum recall, so the recall here could be understood as “the upper

limit of recall with a realistic setup” for each system.
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Table 2. Keyword spotting results. The index size is mea-

sured as lattice arcs (index entries) per spoken character. All

numbers are in %.
id. index FOM Rec Size

S0 word-bestpath 50.7 51.5 0.7

S1 word 69.2 71.2 82.7

S1.1 =>character 71.1 73.2 99.9

S1.2 =>syllable 72.3 75.2 99.5

S1.3 =>toneless syl. 73.7 77.6 99.5

S2 character 67.6 70.4 756.3

S2.1 =>syllable 69.8 73.5 759.5

S2.2 =>toneless syl. 72.0 77.1 759.5

S3 syllable 72.3 76.0 110.4

S3.1 =>toneless syl. 73.6 78.4 110.4

S4 toneless syl. 68.8 72.9 217.1

combining S1.3+S2.2+S3.1+S4
C1 lattice combination 78.6 84.6 1204.4

C2 + within-lattice TMI 79.6 86.1 32.0

C3 + cross-lattice TMI 79.2 86.4 19.3

level unit to a lower-level one always provides better FOMs

and recalls. All the recognizers achieve the best performance

when lattices are converted to toneless-syllables. After con-

version, toneless-syllable lattices from the word-based recog-

nizer (S1.3) show the best FOM of 73.7%.

5.3. System Combination

In the next experiment, we combine the converted toneless-

syllable lattices from four recognizers. This is not only be-

cause toneless-syllable lattices provide the best performance

from each recognizer, but also because they enable cross-

lattice merging by using the same base unit. Equal weights

are used for combination.

The first line (C1) shows the result of the direct lattice

combination without TMI compression, which has a signifi-

cantly better FOM of 78.6% as compared with the best sub-

system 73.7%, with an index size of 1,204.4. The next

line (C2) shows the effect of removing within-lattice redun-

dancy, which is done by applying TMI to each sub-lattice

before lattice combination. A 37 times size reduction (from

1204.4 to 32) is observed. Interestingly, TMI also slightly

improves the accuracy, by introducing additional paths to raw

lattices. In the last line (C3), TMI is applied to the merged

lattice, thus both within-lattice and cross-lattice redundancies

are addressed. A further size reduction from 32.0 to 19.3 is

achieved.

6. CONCLUSION

We examined the Chinese Spoken Term Detection Task by a

lattice-based approach. We compared lattices generated with

different units: word, character, tonal and toneless syllables,

and lattices converted from a higher-level unit to a lower-level

one. Our experimental results have shown that the best per-

formance is with converted toneless-syllable lattices from a

word-based recognizer.

We then combined multiple systems by a lattice-level inte-

gration followed by a time-based arc/node merging. By fully

exploiting the redundant information in the combined system,

we resulted in a compact lattice index with 19.3 arcs per spo-

ken character, with the FOM improved to 79.2% from the best

subsystem at 73.7%.
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