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ABSTRACT

This paper refines the idea of scalar quantization for hidden Markov
model (HMM) parameters which was introduced in an earlier con-
tribution. With the proposed multi-rate approach it is shown that
an increased model compression can be achieved with a significant
computational complexity reduction while also closely preserving
the recognition performance of the original models.

Index Terms— Hidden Markov models, Quantization, Speech
recognition

1. INTRODUCTION

As a consequence of the explosive market penetration of portable
computing platforms and the attractivity of speech recognition for
such personal and input challenged devices, substantial efforts have
been made to adapt speech recognition solutions to the limited com-
putational capabilities of the mobile devices.
Of key importance are solutions which focus on the size reduc-

tion of the acoustic models [1, 2, 3, 4, 5, 6, 7] since, as direct con-
sequence of this target, substantial computational complexity reduc-
tions are also seen. The interest in effective compression schemes for
acoustic models is not likely to fade even though the continuously
increasing storage and computational capabilities of mobile devices
are now challenging the personal computers of the not so distant
past. A persistent driver for even better compression performance
is represented by the intense competition for resources of the multi-
tude of applications which now find their way into the mobile world.
Another equally important factor consists in the increased demands
placed on speech recognition engines. These have evolved from sim-
ple speaker dependent systems into large multi-lingual speaker inde-
pendent systems which have to cope with increasingly difficult tasks.
High recognition capabilities and the inherently difficult mobile en-
vironment often require acoustic models of increased precision with
the added option of creating speaker specific model sets. All of these
result in storage requirements for large numbers of parameters.
One of the dominant methods of parameters compression for

HMMs is described in [2], [3] and [5]. These models, subspace
distribution clustered HMMs, have the capability to effectively ap-
proximate the original models with decreasing rates of quantization.
However, when either the speaker or his environment significantly
differs from the training conditions this accurate modelling comes at
the cost of reduced flexibility for parameter changes in the process
of adaptation. The scalar quantized models, as introduced in [1] and
further illustrated in [8] and [6], trade off a somewhat reduced com-
pression capability for an increased adaptation flexibility and a much
simpler implementation design.
In the following, the paper will briefly revise the design of scalar

quantized HMMs with a stronger focus on the multi-rate construc-

tion. In the final sections a set of experiments are performed and
conclusions are drawn.

2. CDHMMWITH SCALAR QUANTIZED PARAMETERS

2.1. Basic structure

The scalar quantization for continuous density HMMs (CDHMMs)
targets each mean and variance component individually. For a given
set of models, once state densities have been trained, the estimated
mean and variance values are replaced by using a small subset of
values as given by dedicated scalar quantizers. In a direct approach,
each density dimension would require a pair of quantizers to more
accurately reflect the distribution of the mean and variance param-
eters associated to it. Since for most used state emission likelihood
functions the parameter estimation is invariant to the energies in the
individual streams, as design simplification, it is beneficial to bring
the parameters within the same bounds. This can be done either as
part of front-end design or by the use of two global mean and scale
vectors during training or, finally, by a global affine transformation
of the feature vectors and model parameters before quantization and
during recognition.
With the range of values under strict control it is possible to share

the same scalar quantizers for all the model dimensions. With the
shared quantizer we consider that the normalizing mean and scale
vectors are part of quantization parameters. The values in these two
vectors are such chosen as to maximize the overlap of the individual
component distributions with a provision of discarding outliers.
Finally, with the set of mean and inverse standard deviation pa-

rameters from all density components, two Lloyd-Max scalar quan-
tizers are trained. By using these quantizers the model parameters
are then replaced with joint indexes (for each mean and inverse stan-
dard deviation pair) and the two quantizers and global mean and
scale vectors are stored with the models.

2.2. Multi-rate design

In most feature extraction setups, the feature vector components are
of unequal importance for the classification task. For a conventional
CDHMM based speech recognizer engine, when using unit energy
streams, we can illustrate the differences with the plot of the me-
dian of the inverse standard deviation across each component of the
trained acoustic model set. Assuming also that the components are
independent, this gives a rough initial idea of their estimation pre-
cision and their relative importance for the recognition task. For
example, in the case of the C0 to C12Mel cepstral coefficients, the
decreasing importance trend is obvious, with the 1st component, the
energy-like C0, being by far the most important (Figure 1).
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Fig. 1. Inverse standard deviation for C0-C12 components.

In parameter quantization an optimized bit allocation scheme
could take this into account with the aim of evenly balancing the
errors induced by the parameter quantization into the evaluation of
the state likelihood measure for each component (e.g. as in Equation
1). In a very simplistic model when considering Gaussian densi-
ties this results in balancing the variances for the random variables
δμn(Xn−μnd)σ−2

nd
and δσ−1

n (Xn−μnd)2σ−1

nd
which are obtained

by differentiating the Mahalanobis distance. Here δμn is the quan-
tization distortion for the mean quantizer in the nth component and
δσ−1

n the corresponding one for the inverse standard deviation. The
distributions have a continuous part for the quantizer errors and the
feature space Xn and a discrete one for the model parameters in-
dexed by the density index d. There is a strong dependency rela-
tion since we focus on preserving the best performance for the cases
where “accurate” likelihood scores matter most (e.g. high occupa-
tion probability for a density when given the feature vectors). This
simple evaluation could be further extended. However, the effort of
deriving optimal quantization rates can have little practical value due
to the inherent limitations in the theoretical models used and due to
design and implementation constraints (i.e. fractional rates are not
feasible and a simple byte packing for the joint indexes would be
desirable).
The design which is presented here selects a small subset of com-

ponents to be high rate quantized, removes some of the empirically
found ineffective components 1 and uses a half rate quantization for
the remaining components. For a 39 dimensional feature space con-
sisting of 13 normalized MFCC’s and 1st and 2nd order time deriva-
tives 8 components, namely; C0-C3, ΔC0-ΔC2 and ΔΔC0 are
selected for high rate and 8 components are removed (high order
statics and most of the high order 2nd time order derivatives).
As in [1] sharing the same two scalar quantizers (for μ and σ−1)

across all dimensions is feasible and also desirable. With the multi-
rate approach quantizers for each rate need to be stored. In the sim-
plified case of only high and low rates with such large difference
in allocated rates it may also be possible to pick the values for the
low rate quantizer from the high rate quantizer, while storing them
at the starting index positions. With this, again, only two quantiz-
ers are used in indexing and table evaluations. As will be shown in

1Which, in fact, is equivalent to a zero rate quantization.
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Fig. 2. Typical mapping of quantizers over the joint space.

the experimental section, for the “strategic” rates of 5m3v (i.e. 5 bit
means, 3 bit variances) and 3m1v for low rate, this approach worked
satisfactory.
In addition, since the rate is halved for the low rate components,

they can be grouped into pairs of dimensions for a combined index-
ing. With this, the effective working dimension for the state den-
sities is halved resulting in good computational savings, as further
described in the next section.
In Figure 2 a typical situation for such design is illustrated. The

scatter plot of the mean and inverse standard deviation pairs is su-
perposed on the high rate quantizer (black diamond centroids) from
which the low rate quantizer values are selected (red stars).

2.3. Computational benefits

The computational benefits of quantization follows directly from the
possibility of tabulating the most expensive computational part, the
evaluation of state emission likelihoods. For instance, for states with
mixtures of Gaussian densities, the state emission log likelihood for-
mula is:

log b(x) = log
KX

k=1

exp

8<
: log

 
wk
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p
2πσ2

ki

!

−

NX
i=1

(xi − μki)
2

2σ2
ki

9=
; (1)

whereK represents the number of densities in the mixture andN
is the dimension of the feature vector space.
The Gaussian normalization factor is a constant with respect to the

observed features therefore the most costly operation is the compu-
tation of the Mahalanobis distance. With quantization, for any given
feature vector, each term of the summation can take only a limited
range of values. For a typical rate of 5 bits for a mean component
and 3 bits for a variance there are only 256 = 25+3 distinct values
which, when computed and tabulated in advance for each frame, will
reduce the distance evaluation costs to an indexed summation from
these tables.
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With even lower rates the number of terms in the sum can be
reduced by combining adjacent tables into a single one. E.g. with
half the previous rate, combining two such tables results in the same
number of distinct values but reduces the summation costs to half.
Computing the tables at each frame can be avoided if the feature

vectors are also quantized [6]. In this case the entire state likelihood
evaluation is reduced to table look-up and summation with no other
overhead costs per frame.

2.4. Speaker adaptation

For a high performance speech recognition system for mobile de-
vices an adaptation procedure is an integral part of the design. For
mobile devices the effects of the uncertain environment can be mit-
igated against the fact that such devices are usually highly personal
hence leading to good speaker adaptation potential.
As described in [8] a simple Bayesian adaptation approach pro-

vides both reduced complexity and good performance. The same
procedure can be directly applied with the multi-rate quantization.
In essence, model parameters are updated after each utterance by
computing new values and quantizing them with the existing scalar
quantizers which are left unchanged. In this context, the rather inef-
ficient scalar quantization is, in fact, helpful by leaving more room
for parameter adaptation.

3. EXPERIMENTS

3.1. Experimental setup

The scalar quantization algorithms were evaluated on a multi-lingual
name dialling application. The recognizer is based on monophone
HMMs with feature vectors consisting of recursively normalized
Mel cepstral coefficients with appended 1st and 2nd order time deriva-
tives [9]. The monophones cover 27 of the European languages.
However, for a more focused presentation, only the figures for Ger-
man and English are shown. To scale the difficulty of the task, three
recognition grammars were created with sizes of about 100, 500 and
1000 name entries. The entries were a mixture of first names or
both first and last names. Only slightly over 100 distinct names were
present in the test sentences with a total of 11000 utterances for both
languages combined 2. The original recordings are denoted below
with “clean” environment. A mismatched test condition was cre-
ated (denoted in the following as “noise”) by mixing various noise
types with a randomly selected SNR value for each utterance. The
SNR values were uniformly distributed from 5 to 20 dB. The orig-
inal HMMs contain about 2000 Gaussian densities, trained from a
multitude of databases, all recorded in noise free conditions. Except
for the noise robust feature extraction procedure, there is no other
noise compensation algorithm applied for these tests.

3.2. Experimental results

The results are presented in the Tables 1-4. Each line contains a
grammar setup for a given language with bold lines representing the
rates for the given grammar and the test set as a whole. The columns
denote the test models; orig - the original models, 5m3v - high rate
quantized models, 3m1v - low rate quantized models and multi - the
multi-rate ones as described in the previous section.

2The actual counts are 4325 and 6698 for English and German, respec-
tively.

Models orig 5m3v 3m1v multi
Grammar

uk100 1.39 1.55 2.36 1.97
ger100 0.67 0.73 0.94 0.78
Avg100 0.95 1.05 1.50 1.25
uk500 2.47 2.54 3.91 3.19
ger500 1.76 1.85 2.57 1.94
Avg500 2.04 2.12 3.10 2.43
uk1000 3.05 3.03 4.62 3.77
ger1000 2.18 2.22 3.15 2.54
Avg1000 2.52 2.54 3.73 3.02

Table 1. Error rates for speaker independent models.

3.2.1. Clean case

In “clean”, which is a matched case to training conditions, we ob-
serve the expected result for both speaker independent (Table 1)
and speaker adapted tests (Table 2). In spite of the masked com-
ponents, the multi-rate models outperform significantly the low rate
ones while having the same complexity requirements. The high rate
models, at nearly double the costs, do provide better performance
levels and these are very close to the ones of the originally trained
models.
With speaker adaptation, the practical differences in performance

diminish, while a similar performance ordering as before is ob-
served.

Models orig 5m3v 3m1v multi
Grammar

uk100 0.39 0.39 0.65 0.51
ger100 0.28 0.27 0.46 0.33
Avg100 0.32 0.32 0.53 0.40
uk500 0.53 0.55 1.02 0.74
ger500 0.40 0.39 0.66 0.43
Avg500 0.45 0.45 0.80 0.55
uk1000 0.69 0.65 1.13 0.81
ger1000 0.43 0.43 0.73 0.46
Avg1000 0.53 0.52 0.89 0.60

Table 2. Error rates for speaker adapted models.

3.2.2. Noisy case

In the noisy case we observe an interesting phenomenon. Likely
helped by the more constrained range of values for the low order
cepstral coefficients, the 5m3v and 3m1v quantized models are out-
performing even the original ones for nearly all the unadapted tests.
The multi-rate models, perhaps slightly handicapped by the missing
components, are a bit behind. Overall, in relative terms, the error
differences are not very large making all the model sets about simi-
lar in practical use. This also illustrates that the acoustic mismatch
due to the unseen testing environment and the inherent problems in-
duced by noise dominate with respect to the other “noise” induced
in the model parameters by quantization.
With speaker adaptation, the performance ordering reverts to the

expected one with the exception of the smallest sized grammar
where the multi-rate models are still slightly behind, perhaps also
as result of the proportionally lower initial performance point. For
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Models orig 5m3v 3m1v multi
Grammar

uk100 10.96 10.31 10.61 11.79
ger100 8.24 7.78 7.81 8.29
Avg100 9.31 8.77 8.91 9.66
uk500 15.12 14.64 14.50 15.38
ger500 13.05 12.48 13.15 13.81
Avg500 13.86 13.33 13.68 14.43
uk1000 16.92 16.32 16.39 17.20
ger1000 14.94 14.17 15.39 15.77
Avg1000 15.72 15.01 15.78 16.33

Table 3. Noise condition error rates for speaker independent models.

the larger grammars, in comparison with 3m1v we can observe a
more precise adaptation for the multi-rate models which end up with
slightly better figures in spite of starting from a worse position.

Models orig 5m3v 3m1v multi
Grammar

uk100 4.83 4.83 5.62 6.24
ger100 3.14 3.51 4.03 4.03
Avg100 3.80 4.03 4.65 4.90
uk500 5.62 5.78 7.24 7.03
ger500 4.08 4.45 6.23 5.55
Avg500 4.68 4.97 6.63 6.13
uk1000 6.36 6.71 8.23 7.70
ger1000 4.88 5.02 7.20 6.54
Avg1000 5.46 5.68 7.60 7.00

Table 4. Noise condition error rates for speaker adapted models.

3.2.3. Final observations

In an overall comparison it is readily apparent the significant boost
that adaptation can bring in performance. The relative quantization
performances are visible for the clean environment with a clear su-
periority of the high rate models, followed by the multi-rate ones. In
noisy environments the performance differences are no longer very
important, with an exception for speaker adaptation where the multi-
rate models have a slight edge.
For quantization the compression factor can be quickly estimated

as original bit-rate for a parameter pair 3 over the 8 bits or 4 bits rates
required by the quantization methods proposed. However, there are
no specific experimental numbers presented in support of the com-
putational complexity savings since these are highly implementation
dependent. A theoretical evaluation of the number of arithmetic op-
erations required is not difficult and an example is given in [1].

3this could be 32 bits or even 16 bits for the usual fixed point implemen-
tations

4. CONCLUSION

For CDHMMs based speech recognizers scalar quantization pro-
vides a simple yet valuable approach towards memory and compu-
tational complexity reductions. If the design imposes strong mem-
ory limitations and, therefore, the quantization must be done at very
low bit-rates, it is more effective to consider a multi-rate quantiza-
tion approach. Although the performance differences among various
quantization options are rather marginal for mismatched conditions,
in better matched cases, the multi-rate approach can offer improved
performance and better adaptation potential for same costs as a sin-
gle rate quantization solution.
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