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ABSTRACT 
We present our recent progress towards implementing large 
vocabulary continuous SMS Dictation in embedded devices. 
The dictation engine we describe here is based on the 
popular finite state transducer paradigm and is capable of 
handling large vocabularies and high order n-gram language 
models in a small memory footprint - even relative to what 
is available in current high end devices such as the Nokia 
N800 Internet tablet and the N95 Symbian phone. We 
illustrate the performance of the engine on a 20k vocabulary 
Chinese Mandarin dictation task which requires less than 
10Mb RAM memory to run on the device. The accuracy of 
the continuous engine is similar to the accuracy of the 
isolated word dictation engine we have previously 
developed. 

Index Terms— Speech recognition, finite automata, 
mobile communication, text communication 
 

1. INTRODUCTION 
 

Large vocabulary speech dictation products have for a 
number of years been available for the desktop PC market, 
but in practice they have not been widely adopted by users. 
This has partly been due to technical issues, but also due to 
the fact that PCs are equipped with keyboards, which allow 
for efficient text input at a rate which – for an experienced 
typist – clearly exceeds the speaking rate. Mobile devices on 
the other hand are equipped with very limited keyboards, 
which complicates text input – particularly for languages 
such as Chinese where the number of input symbols is much 
higher than for English. Nevertheless, text messaging on 
mobiles is very popular even for these languages – In the 
Asia Pacific area alone, hundreds of billions of SMS 
messages are sent each year, and with the introduction of e-
mail and internet enabled phones, the need for efficient 
mobile text input solutions is growing. This is the main 
motivation for us to bringing speech dictation into mobile 
phones, and we have previously described how we have 
implemented isolated word dictation for languages such as 
English and Mandarin Chinese by essentially augmenting an 

earlier isolated word “name dialer” ASR engine with a 
language model and a VAD module for pause detection [1]. 
In terms of memory and cpu usage, continuous speech 
dictation is much more demanding than isolated word 
dictation, but from the users point of view also more 
attractive because it allows for a more natural speaking 
style, and a higher text input rate.  
 

2. EMBEDDED ENVIRONMENT 
 

Cost, size and power consumption are factors that in 
practise limit the CPU and memory resources available on 
embedded platforms. Nevertheless, in recent years 
embedded platforms have become powerful enough to host 
even complex applications such as large vocabulary 
continuous speech recognition [2,4,5,6,8]. In this paper we 
describe our own effort to implement a large vocabulary 
speech recognition application targeted for embedded 
devices such as the Nokia N800 Internet tablet – a Linux 
device equipped with a 320 MHz ARM TI OMAP 2420 
processor, 128 MB RAM, 256 MB flash ROM. The N800 
has floating point support, which means that another 
traditional limitation of embedded applications has 
vanished: the need to implement all algorithms in fixed-
point arithmetic. 
 

3. ACOUSTIC MODELLING 
 
Because of the scalability it affords, acoustic modeling in 
our engine is based on state tied triphone Hidden Markov 
Models (HMMs) [15]. Each triphone model has a left-to-
right topology with 3 emitting states, and each state has 16 
mixtures per state. The HMMs we currently use are within-
word context dependent models – i.e. phone context is not 
modeled across word boundaries. Furthermore, transition 
probabilities between states are not used, because we have 
long found that they contribute very little to the modeling 
accuracy of the HMM set. In order to reduce the memory 
footprint and speed up mixture calculations, the models are 
subspace encoded [3]: 
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The means and variances are quantized within each 
subspace – quantization is not strictly required, but there 
would be no advantage in using the subspace representation 
without quantization. Subspace HMMs can be used with 
different subspace dimensionalities – if the feature space has 
dimension D, then at one extreme D 1-dimensional 
subspaces could be used, and at the other extreme 1 D-
dimensional subspace could be used. For 1-dimensional 
subspaces we have found that 5-bit quantization (32 
codebook elements) usually results in a quantization error 
that is so small that it has negligible influence on the 
recognition accuracy. Subspace quantization results in a 
significant memory footprint reduction because, instead of 
storing the mean and variance components directly as for 
instance 32-bit floats, we only need to store the 5-bit index 
to the subspace codebook – with each index referencing a 
Gaussian subspace mixture. The size of the codebook is 
typically insignificant – e.g. 39x32x2=2496 bytes for the 
common 39 dimensional “13 MFCC+delta+delta-delta” 
front-end. With this front-end, directly storing 16 39 
dimensional mean/variance  components (per HMM state) 
would require 16*39*4*2=4992 bytes. With bit-packing, 
the subspace representation only requires 16*39*5-bit=390 
bytes – a saving of more than an order of magnitude.   
Additionally, the mixture likelihood calculation can be 
carried out significantly faster because the subspace pdfs 
can be pre-computed and looked up in a table each frame 
time. To further simplify the mixture calculations, we use 
the approximation: 
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or in the log domain: 

),;()log(max)(log 2

1
1 mkmkk

K

k
m

M
m xNcxP σμ

=
= += (3) 

 
The max approximation is faster to compute because in 
addition to avoiding the need to add log domain 
probabilities, it also allows the calculation of the sum term 
in equation (3) to be broken off if/when the partial sum falls 
below the current maximum. Finally mixture weights are 
left out too because we have found that they have very little 
influence on the modeling accuracy: 
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Leaving out the mixture weights has very little influence on  
speed, but there is a modest memory saving – depending on 
the number of mixtures in the model set. Table 1 below 
summarizes the character accuracy for the three different 

mixture calculation strategies corresponding respectively to 
equation 1 (baseline), 3 (max) and 4 (max and no weight). 
The results are from our internal SMS dictation test set 
which has a perplexity of around 100 (see table 2), and 
consists of about 9 hours of speech. The experiments have 
been repeated for three different HMM model sets with 
different number of mixtures – respectively 10k, 5k and 3k. 
For the 10k system, the recogniser based on (4) is roughly 
25% faster than the baseline system. For the 5k, and 3k 
systems the gains are smaller (respectively 18% and 10%) 
due to mixture calculations taking less overall time in these 
systems. All accuracies in table 1, and in this paper, are 
based on speaker independent acoustic modelling. 
 

 10k 5k 3k 
sum & mix weights 81.40% 78.95% 75.62% 
max & mix weights 81.39% 79.02% 75.87% 
max & no mix weights  81.39% 79.02% 75.87% 

Table 1: Character accuracy for three different mixture 
calculation strategies and 3 different HMM sets. 

 
3. NETWORK SEARCH 

 
Finite state transducer networks have in recent years 
become very popular in the speech recognition community 
[9,7,5]. Finite state transducers provide an elegant way of 
representing the different model components in a speech 
recogniser (HMMs, pronunciation dictionary, language 
model) and combining them into a minimal finite state 
network that can drive a speech recogniser. The language 
model we use in our dictation engine is based on n-gram 
modeling – in principle we use the same n-gram model as in 
our earlier isolated word dictation system [1], except that 
that particular system only made use of the 2-gram section – 
partly because of memory restrictions on the target platform 
it was developed for, and partly because reasonable word 
accuracies could be achieved with even a bigram LM in that 
system. Continuous speech recognition, however, is more 
challenging than isolated word dictation, and consequently 
it is more important to make use of the extra modeling 
accuracy that can be gained by using higher order n-grams.  

The continuous dictation engine is based on a 1-pass 
architecture with a recognition transducer created on the 
basis of higher order n-grams (all n-gram sections are used 
–the network includes backoff paths from the highest level 
all  the way down to 1-grams if necessary). An alternative to 
this would be to adopt a multi pass strategy similar to [6,5] 
where a bigram network is used in a first pass where a 
lattice is computed and then rescored with word trigram 
statistics in a second pass. The advantage of this is that a 
smaller recognition network can be used in the first pass. 
However, a 1-pass architecture where all knowledge sources 
are used in the first pass is in principle more accurate than a 
multi pass solution, because in a multi pass solution it is 
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usually impossible to recover from search errors in earlier 
passes. A multi pass architecture with rescoring is not 
difficult to implement on top of the current decoder, but we 
have not yet explored this possibility seriously. With the 
current models memory is not a major obstacle; the present 
engine requires less than 10MB RAM memory, which is not 
big problem on a device such as the N800. This could 
change, however, if we want to use significantly larger n-
gram LMs in the recogniser, or if we want improve the 
acoustic modeling by using cross-word context dependent 
acoustic models.  

 
3.1. LM Pruning 
A problem with large vocabulary n-gram language models 
is that they require a lot of data for training, and that the size 
of the LMs tends to be proportional to the size of the 
corpora they have been trained on. An efficient way to deal 
with this is entropy pruning [13]. Table 2 below shows the 
number of n-grams in a 6-gram LM trained on a corpus of 
approximately 5 million Chinese words. Also shown is the 
perplexity of the LM for each n-gram order included. The 
statistics are shown for two different entropy pruning levels 
– light pruning (1e-10) and heavy pruning (8e-7). The 
perplexity figures indicate that above order 3, there is 
relatively little additional information in the n-grams.  Table 
3 shows the size of the recognition networks that results 
from these two LMs – the recognition networks are created 
on the basis of a 10k mixture HMM set. The heavily pruned 
network is based on all n-grams up to order 6, whereas the 
lightly pruned network is only based on the orders up to 3 (a 
4th order network could not be constructed in this case on 
the machine used for these experiments, because the 
intermediary transducer operations required too much 
memory). The heavily pruned network has almost 6 times 
fewer arcs than the lightly pruned network – although this 
comes at a cost of some accuracy.  The static recognition 
network is clearly the largest component in the recognition 
network – the network is represented internally as a list of 
arcs grouped by start state. Additionally it is necessary for 
each node to store the index of the first arc belonging to that 
node in the arc list. Each arc stores the end node of the arc, 
the penalty of the arc and the transducer label (input, output) 
of the arc. How many bits are required depends on the 
complexity of the network (number of labels, quantization 
etc). For the networks described here, 7 bytes per arc are 
required – hence the large network requires 21.9Mb for 
storing arcs, and the small network only 3.7Mb. Since there 
are more than 216 arcs, indexing the arc array requires 32-
bits and hence the list of first-arcs is also a large data 
structure – requiring respectively 6.3Mb and 1.2Mb if 
stored as an array of 32-bit integers. However, half that 
amount can in practice be used by storing only a 16-bit 
index and dynamically calculating the 32-bit index by 
looking up the relevant offset for the individual nodes in a 
table. 

#n-grams & perplexity Orde
r E. Prun 1e-10 E.Prun 8e-7 

1 20002 379.24  20002 379.24 
2 982029 105.04 157826 117.69 
3 591050 84.40 46746 102.73 
4 408867 81.46 9471 101.53 
5 165733 81.30 430 101.50 
6 55571 81.27 6 101.50 

Table 2: 6-gram LM size for two different pruning 
thresholds. 

 
Order E Pruning #nodes #arcs Acc 

 3 1e-10 1582429 3128598 83.16% 
 6 8e-7 291220 535418 81.39% 

Table 3: Recognition network size and recognition 
accuracy. 

 
3.2. Weight Quantization 
It is well known that LM weights can be quantized to a very 
low level without significantly impacting recognition 
accuracy [14]. In our isolated dictation system, we have 
been able to quantize bigram probabilities using a 4-bit 
codebook – although that particular representation had the 
benefit of a linear interpolation scheme to reduce 
quantization errors [11]. Weights in a finite state transducer 
network cover a much wider range than the probabilities 
found in a particular n-gram section of a language model – 
this is so because the finite state network is constructed 
from several n-gram orders, as well as backoff probabilities, 
which all have different ranges. Furthermore, during the 
network construction, arc weights are combined and pushed 
around the network resulting in even more spread. Table 4 
shows the character accuracies in an evaluation where 
respectively 32- and 8-bit quantized probabilities are used in 
combination with 3 different HMM sets with different 
numbers of mixtures. As can be seen, character accuracy is 
almost the same in the two sets of experiments. Using 8-bit 
quantized probabilities instead of the original 32-bit values 
saves 3 bytes per  arc – corresponding to respectively 
9.3Mb and 1.6Mb for the two recognition networks in table 
3 above. 
 

 10k 5k 3k 
32-bit arc penalties 81.43% 79.02% 75.91% 
8-bit arc penalties 81.39% 79.02% 75.87% 

Table 2: Word accuracy with and without 8-bit 
quantization of arc penalties 

3. BEAM PRUNING 
 
Beam pruning is a simple way to make speed-accuracy trade 
offs in a Viterbi decoder. Figure 1 below shows the 
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accuracy–real time (RT) graph for three different LM & 
HMM combinations. The two first curves are for the 10k 
HMM set used in combination with the two LMs from table 
2. These two curves do not intersect – at the same RT point 
the large LM is always more accurate.  The third curve is 
for the small LM used in combination with the 5k model set 
– the 5k model set is less accurate than the 10k model set, 
but it is also significantly faster to use, and for stricter speed 
requirements, it is possible to achieve a better speed-
accuracy tradeoff with this model set. By far the most time 
consuming part of the decoder is mixture calculations which 
take 60-80% of the decoder time for the LMs and model 
sets used in this paper. The RT scale in figure 1 is for our 
development environment – the embedded target 
environment is at least an order of magnitude slower.  
 

 
Figure 1: Accuracy versus Real Time (RT)  for three 
different LM & HMM combinations. 

 
5. CONCLUSION 

 
We have presented a large vocabulary continuous 
recogniser we have developed for short message dictation 
on embedded devices. The character accuracy of the engine 
is comparable to what we have previously reported for 
isolated dictation [1]. Computationally, fast mixture pdf 
calculations is an important bottleneck in the decoder. 
Memory usage, on the other hand, is much less critical. In 
the experiments we reported here we did not include 
adaptation of acoustic and language models – in practice 
these are techniques that can significantly improve ASR 
performance on a personal device such as a mobile phone.  
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