
A DECODER FOR LARGE VOCABULARY CONTINUOUS SHORT MESSAGE DICTATION
ON EMBEDDED DEVICES

Jesper Olsen, Yang Cao, Guohong Ding, Xinxing Yang

Nokia Research Center

Nokia House 1
No. 11, He Ping Li Dong Jie
Beijing 100013, P.R.China

{jesper.olsen, yang.1.cao, guohong.ding, xinxing.yang}@nokia.com

ABSTRACT
We present our recent progress towards implementing large
vocabulary continuous SMS Dictation in embedded devices.
The dictation engine we describe here is based on the
popular finite state transducer paradigm and is capable of
handling large vocabularies and high order n-gram language
models in a small memory footprint - even relative to what
is available in current high end devices such as the Nokia
N800 Internet tablet and the N95 Symbian phone. We
illustrate the performance of the engine on a 20k vocabulary
Chinese Mandarin dictation task which requires less than
10Mb RAM memory to run on the device. The accuracy of
the continuous engine is similar to the accuracy of the
isolated word dictation engine we have previously
developed.

Index Terms— Speech recognition, finite automata,
mobile communication, text communication

1. INTRODUCTION

Large vocabulary speech dictation products have for a
number of years been available for the desktop PC market,
but in practice they have not been widely adopted by users.
This has partly been due to technical issues, but also due to
the fact that PCs are equipped with keyboards, which allow
for efficient text input at a rate which – for an experienced
typist – clearly exceeds the speaking rate. Mobile devices on
the other hand are equipped with very limited keyboards,
which complicates text input – particularly for languages
such as Chinese where the number of input symbols is much
higher than for English. Nevertheless, text messaging on
mobiles is very popular even for these languages – In the
Asia Pacific area alone, hundreds of billions of SMS
messages are sent each year, and with the introduction of e-
mail and internet enabled phones, the need for efficient
mobile text input solutions is growing. This is the main
motivation for us to bringing speech dictation into mobile
phones, and we have previously described how we have
implemented isolated word dictation for languages such as
English and Mandarin Chinese by essentially augmenting an

earlier isolated word “name dialer” ASR engine with a
language model and a VAD module for pause detection [1].
In terms of memory and cpu usage, continuous speech
dictation is much more demanding than isolated word
dictation, but from the users point of view also more
attractive because it allows for a more natural speaking
style, and a higher text input rate.

2. EMBEDDED ENVIRONMENT

Cost, size and power consumption are factors that in
practise limit the CPU and memory resources available on
embedded platforms. Nevertheless, in recent years
embedded platforms have become powerful enough to host
even complex applications such as large vocabulary
continuous speech recognition [2,4,5,6,8]. In this paper we
describe our own effort to implement a large vocabulary
speech recognition application targeted for embedded
devices such as the Nokia N800 Internet tablet – a Linux
device equipped with a 320 MHz ARM TI OMAP 2420
processor, 128 MB RAM, 256 MB flash ROM. The N800
has floating point support, which means that another
traditional limitation of embedded applications has
vanished: the need to implement all algorithms in fixed-
point arithmetic.

3. ACOUSTIC MODELLING

Because of the scalability it affords, acoustic modeling in
our engine is based on state tied triphone Hidden Markov
Models (HMMs) [15]. Each triphone model has a left-to-
right topology with 3 emitting states, and each state has 16
mixtures per state. The HMMs we currently use are within-
word context dependent models – i.e. phone context is not
modeled across word boundaries. Furthermore, transition
probabilities between states are not used, because we have
long found that they contribute very little to the modeling
accuracy of the HMM set. In order to reduce the memory
footprint and speed up mixture calculations, the models are
subspace encoded [3]:

43371-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

)),;(()(2

1
1 mkmkk

K

k

M

m m xNcxP σμ∏
=

=
= (1)

The means and variances are quantized within each
subspace – quantization is not strictly required, but there
would be no advantage in using the subspace representation
without quantization. Subspace HMMs can be used with
different subspace dimensionalities – if the feature space has
dimension D, then at one extreme D 1-dimensional
subspaces could be used, and at the other extreme 1 D-
dimensional subspace could be used. For 1-dimensional
subspaces we have found that 5-bit quantization (32
codebook elements) usually results in a quantization error
that is so small that it has negligible influence on the
recognition accuracy. Subspace quantization results in a
significant memory footprint reduction because, instead of
storing the mean and variance components directly as for
instance 32-bit floats, we only need to store the 5-bit index
to the subspace codebook – with each index referencing a
Gaussian subspace mixture. The size of the codebook is
typically insignificant – e.g. 39x32x2=2496 bytes for the
common 39 dimensional “13 MFCC+delta+delta-delta”
front-end. With this front-end, directly storing 16 39
dimensional mean/variance components (per HMM state)
would require 16*39*4*2=4992 bytes. With bit-packing,
the subspace representation only requires 16*39*5-bit=390
bytes – a saving of more than an order of magnitude.
Additionally, the mixture likelihood calculation can be
carried out significantly faster because the subspace pdfs
can be pre-computed and looked up in a table each frame
time. To further simplify the mixture calculations, we use
the approximation:

),;(max)(2

1
1 mkmkk

K

k
m

M
m xNcxP σμ∏

=
== (2)

or in the log domain:

),;()log(max)(log 2

1
1 mkmkk

K

k
m

M
m xNcxP σμ

=
= += (3)

The max approximation is faster to compute because in
addition to avoiding the need to add log domain
probabilities, it also allows the calculation of the sum term
in equation (3) to be broken off if/when the partial sum falls
below the current maximum. Finally mixture weights are
left out too because we have found that they have very little
influence on the modeling accuracy:

)),;(max)(log 2

1
1 mkmkk

K

k

M
m xNxP σμ

=
== (4)

Leaving out the mixture weights has very little influence on
speed, but there is a modest memory saving – depending on
the number of mixtures in the model set. Table 1 below
summarizes the character accuracy for the three different

mixture calculation strategies corresponding respectively to
equation 1 (baseline), 3 (max) and 4 (max and no weight).
The results are from our internal SMS dictation test set
which has a perplexity of around 100 (see table 2), and
consists of about 9 hours of speech. The experiments have
been repeated for three different HMM model sets with
different number of mixtures – respectively 10k, 5k and 3k.
For the 10k system, the recogniser based on (4) is roughly
25% faster than the baseline system. For the 5k, and 3k
systems the gains are smaller (respectively 18% and 10%)
due to mixture calculations taking less overall time in these
systems. All accuracies in table 1, and in this paper, are
based on speaker independent acoustic modelling.

 10k 5k 3k
sum & mix weights 81.40% 78.95% 75.62%
max & mix weights 81.39% 79.02% 75.87%
max & no mix weights 81.39% 79.02% 75.87%

Table 1: Character accuracy for three different mixture
calculation strategies and 3 different HMM sets.

3. NETWORK SEARCH

Finite state transducer networks have in recent years
become very popular in the speech recognition community
[9,7,5]. Finite state transducers provide an elegant way of
representing the different model components in a speech
recogniser (HMMs, pronunciation dictionary, language
model) and combining them into a minimal finite state
network that can drive a speech recogniser. The language
model we use in our dictation engine is based on n-gram
modeling – in principle we use the same n-gram model as in
our earlier isolated word dictation system [1], except that
that particular system only made use of the 2-gram section –
partly because of memory restrictions on the target platform
it was developed for, and partly because reasonable word
accuracies could be achieved with even a bigram LM in that
system. Continuous speech recognition, however, is more
challenging than isolated word dictation, and consequently
it is more important to make use of the extra modeling
accuracy that can be gained by using higher order n-grams.

The continuous dictation engine is based on a 1-pass
architecture with a recognition transducer created on the
basis of higher order n-grams (all n-gram sections are used
–the network includes backoff paths from the highest level
all the way down to 1-grams if necessary). An alternative to
this would be to adopt a multi pass strategy similar to [6,5]
where a bigram network is used in a first pass where a
lattice is computed and then rescored with word trigram
statistics in a second pass. The advantage of this is that a
smaller recognition network can be used in the first pass.
However, a 1-pass architecture where all knowledge sources
are used in the first pass is in principle more accurate than a
multi pass solution, because in a multi pass solution it is

4338

usually impossible to recover from search errors in earlier
passes. A multi pass architecture with rescoring is not
difficult to implement on top of the current decoder, but we
have not yet explored this possibility seriously. With the
current models memory is not a major obstacle; the present
engine requires less than 10MB RAM memory, which is not
big problem on a device such as the N800. This could
change, however, if we want to use significantly larger n-
gram LMs in the recogniser, or if we want improve the
acoustic modeling by using cross-word context dependent
acoustic models.

3.1. LM Pruning
A problem with large vocabulary n-gram language models
is that they require a lot of data for training, and that the size
of the LMs tends to be proportional to the size of the
corpora they have been trained on. An efficient way to deal
with this is entropy pruning [13]. Table 2 below shows the
number of n-grams in a 6-gram LM trained on a corpus of
approximately 5 million Chinese words. Also shown is the
perplexity of the LM for each n-gram order included. The
statistics are shown for two different entropy pruning levels
– light pruning (1e-10) and heavy pruning (8e-7). The
perplexity figures indicate that above order 3, there is
relatively little additional information in the n-grams. Table
3 shows the size of the recognition networks that results
from these two LMs – the recognition networks are created
on the basis of a 10k mixture HMM set. The heavily pruned
network is based on all n-grams up to order 6, whereas the
lightly pruned network is only based on the orders up to 3 (a
4th order network could not be constructed in this case on
the machine used for these experiments, because the
intermediary transducer operations required too much
memory). The heavily pruned network has almost 6 times
fewer arcs than the lightly pruned network – although this
comes at a cost of some accuracy. The static recognition
network is clearly the largest component in the recognition
network – the network is represented internally as a list of
arcs grouped by start state. Additionally it is necessary for
each node to store the index of the first arc belonging to that
node in the arc list. Each arc stores the end node of the arc,
the penalty of the arc and the transducer label (input, output)
of the arc. How many bits are required depends on the
complexity of the network (number of labels, quantization
etc). For the networks described here, 7 bytes per arc are
required – hence the large network requires 21.9Mb for
storing arcs, and the small network only 3.7Mb. Since there
are more than 216 arcs, indexing the arc array requires 32-
bits and hence the list of first-arcs is also a large data
structure – requiring respectively 6.3Mb and 1.2Mb if
stored as an array of 32-bit integers. However, half that
amount can in practice be used by storing only a 16-bit
index and dynamically calculating the 32-bit index by
looking up the relevant offset for the individual nodes in a
table.

#n-grams & perplexity Orde
r E. Prun 1e-10 E.Prun 8e-7

1 20002 379.24 20002 379.24
2 982029 105.04 157826 117.69
3 591050 84.40 46746 102.73
4 408867 81.46 9471 101.53
5 165733 81.30 430 101.50
6 55571 81.27 6 101.50

Table 2: 6-gram LM size for two different pruning
thresholds.

Order E Pruning #nodes #arcs Acc

 3 1e-10 1582429 3128598 83.16%
 6 8e-7 291220 535418 81.39%

Table 3: Recognition network size and recognition
accuracy.

3.2. Weight Quantization
It is well known that LM weights can be quantized to a very
low level without significantly impacting recognition
accuracy [14]. In our isolated dictation system, we have
been able to quantize bigram probabilities using a 4-bit
codebook – although that particular representation had the
benefit of a linear interpolation scheme to reduce
quantization errors [11]. Weights in a finite state transducer
network cover a much wider range than the probabilities
found in a particular n-gram section of a language model –
this is so because the finite state network is constructed
from several n-gram orders, as well as backoff probabilities,
which all have different ranges. Furthermore, during the
network construction, arc weights are combined and pushed
around the network resulting in even more spread. Table 4
shows the character accuracies in an evaluation where
respectively 32- and 8-bit quantized probabilities are used in
combination with 3 different HMM sets with different
numbers of mixtures. As can be seen, character accuracy is
almost the same in the two sets of experiments. Using 8-bit
quantized probabilities instead of the original 32-bit values
saves 3 bytes per arc – corresponding to respectively
9.3Mb and 1.6Mb for the two recognition networks in table
3 above.

 10k 5k 3k
32-bit arc penalties 81.43% 79.02% 75.91%
8-bit arc penalties 81.39% 79.02% 75.87%

Table 2: Word accuracy with and without 8-bit
quantization of arc penalties

3. BEAM PRUNING

Beam pruning is a simple way to make speed-accuracy trade
offs in a Viterbi decoder. Figure 1 below shows the

4339

accuracy–real time (RT) graph for three different LM &
HMM combinations. The two first curves are for the 10k
HMM set used in combination with the two LMs from table
2. These two curves do not intersect – at the same RT point
the large LM is always more accurate. The third curve is
for the small LM used in combination with the 5k model set
– the 5k model set is less accurate than the 10k model set,
but it is also significantly faster to use, and for stricter speed
requirements, it is possible to achieve a better speed-
accuracy tradeoff with this model set. By far the most time
consuming part of the decoder is mixture calculations which
take 60-80% of the decoder time for the LMs and model
sets used in this paper. The RT scale in figure 1 is for our
development environment – the embedded target
environment is at least an order of magnitude slower.

Figure 1: Accuracy versus Real Time (RT) for three
different LM & HMM combinations.

5. CONCLUSION

We have presented a large vocabulary continuous
recogniser we have developed for short message dictation
on embedded devices. The character accuracy of the engine
is comparable to what we have previously reported for
isolated dictation [1]. Computationally, fast mixture pdf
calculations is an important bottleneck in the decoder.
Memory usage, on the other hand, is much less critical. In
the experiments we reported here we did not include
adaptation of acoustic and language models – in practice
these are techniques that can significantly improve ASR
performance on a personal device such as a mobile phone.

6. REFERENCES

[1] J. Alhonen, Y. Cao, G. Ding, Y. Liu, J. Olsen, X. Wang, X.
Yang, “Mandarin Short Message Dictation on Symbian Series 60
Mobile Phones,” The Int. Conf. on Mobile Technology,
Applications and Systems, Singapore, 2007.

[2] E. Bocchieri and D. Blewett, “A Decoder for LVCSR Based on
Fixed-Point Arithmetic”, Proc. of ICASSP, Toulouse , pp. 1113-
11116, 2006

[3] E. Bocchieri and B.K. Mak, “Subspace Distribution Clustering
Hidden Markov Model”, IEEE Transactions on Speech and Audio
Processing, 9(3):264-275, March, 2001

[4] H. Franco, J. Zheng, J. Butzenberger, F. Cesari, M. Frandsen, J.
Arnold, V. Ramana, R. Gadde, A. Stolcke, V. Abrash,
“DynaSpeak: SRI’s Scalable Speech Recognizer for Embedded
and Mobile Systems”, Proc. of Human Language Technology
Conference (HLT-2002), San Diego, USA, 2002

[5] I.L. Hetherington, “PocketSUMMIT: Small-Footprint
Continuous Speech Recognition”, Proc of ICASSP, Belgium, pp.
1465-1468, 2007

[6] D. Huggins-Daines et al, “POCKETSPHINX: A Free Real-
Time Continuous Speech Recognition System for Hand-Held
Devices”, Proc. of ICASSP, Toulouse, pp. 185-188, 2006

[7] S. Kanthak, H. Ney, M. Riley and M. Mohri, “A Comparison
of Two LVR search Optimization Techniques”, Proc. of ICSLP,
USA, pp. 1309-1312, 2002

[8] H. Kokubo, N. Kataoka, A. Lee, T. Kawahara, K. Shikano,
”Embedded Julius: Continuous Speech Recognition Software for
Microprocessor”, Int. Workshop on Multimedia Signal Processing,
Canada, October, 2006

[9] M. Mohri, F. Pereira and M. Riley, “Weighted Finite-State
STransducers in Speech Recognition”, Computer Speech &
Language, 16(1):69-88, January 2002

[10] M. Novak, “Towards Large Vocabulary ASR on Embedded
Platforms”, Proc. of Int. Conf. on Speech and Language
Processing (ICSLP), Korea, 2004

[11] J. Olsen and D. Oria, “Profile Based Compression of N-gram
Language Models”, Proc. of ICASSP, Toulouse, pp. 1041-1044,
2006

[12] N.N. Schraudolf, “A Fast, Compact Approximation of the
Exponential Function”, Neural Computation. 1999;11(4):853-
862

[13] A. Stolcke, “Entropy-based Pruning of Backoff Language
Models”, DARPA Broadcast News Transcription and
Understanding Workshop, pp. 270-274, 1998

[14] E. Whittaker, B. Raj, “Quantization-based Language Model
Compression”, Proc. of Interspeech, Aalborg, pp. 33-36, 2001

[15] S.J. Young, J.J. Odell and P.C. Woodland, “Tree-Based State
Tying for High Accuracy Modeling”, ARPA Workshop on Human
Language Technology, pp. 307-312, 1994

4340

