
ADAPTATION OF COMPRESSED HMM PARAMETERS FOR RESOURCE-CONSTRAINED
SPEECH RECOGNITION

Jinyu Li, Li Deng, Dong Yu, Jian Wu, Yifan Gong, and Alex Acero

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052

jinyuli@ece.gatech.edu, {deng;dongyu;jianwu;ygong;alexac}@microsoft.com

ABSTRACT

Recently, we successfully developed and reported a new
unsupervised online adaptation technique, which jointly
compensates for additive and convolutive distortions with vector
Taylor series (JAC/VTS), to adjust (uncompressed) HMMs under
acoustically distorted environments [1]. In this paper, we extend
that technique to adapt compressed HMMs using JAC/VTS where
limited computation and/or memory resources are available for
speech recognition (e.g., on mobile devices). Subspace coding
(SSC) is developed and used to quantize each dimension of the
multivariate Gaussians in the compressed HMMs. Three
algorithmic design options are proposed and evaluated that
combine SSC with JAC/VTS, where three different types of
tradeoffs are made between recognition accuracy and the required
computation/memory/storage resources. The strengths and
weaknesses of these three options are discussed and shown on the
Aurora2 task of noise-robust speech recognition. The first option
greatly reduces the storage space and gives 93.2% accuracy, which
is the same as the baseline accuracy but with little reduction in the
run-time computation/memory cost. The second option reduces
about 79.9% of the computation cost and about 33.5% of the
memory requirement at a very small price of 0.5% decrease of
accuracy (to 92.7%). The third option cuts about 89.2% of the
computation cost and about 65.5% of the memory requirement
while reducing recognition accuracy by 2.7% (to 90.5%).

Index Terms—resource constraint, subspace coding, joint

compensation, additive and convolutive distortions, mobile devices

1. INTRODUCTION

With the rapid increase in the usage sceneries of mobile devices, it
is natural to put automatic speech recognition (ASR) on mobile
devices, which are ideal platforms for hands-free applications. Two
critical factors affecting the applications on mobile devices are
speed and memory requirements as they are always resource
limited. Usually, speech recognition is designed running on
machines with high computation power and large memory. To be
used in mobile devices, ASR systems must be tailored to meet the
computation and memory limits. A popular choice is to use vector
quantization (VQ) and compress the HMM parameters. Different
VQ methods have been proposed to quantize the Gaussian vectors
or sub-vectors [2].

Differing from other applications in mobile devices, speech
recognition faces the additional, special issue of noise robustness.
Noise robustness in speech recognition remains an outstanding and
difficult problem despite many years of research and investment.

Developing noise robustness techniques for mobile applications is
even harder. Because of the very nature of mobility, mobile
devices can be used in any environments, often acoustically
adverse. The speech signals input into mobile devices can be
distorted by many possible types of distortions, including additive
and convolutive distortions and their mixes, which are not easy to
predict accurately during recognizers’ development. Therefore, the
actual models for the distorted speech deviate from the original
models trained in advance. The originally trained models may be
adapted to fit the environment with maximum likelihood linear
regression (MLLR) [3] or maximum a posterior (MAP) [4].
However, to achieve acceptable performance the MLLR method
often requires significantly more than one transformation matrix,
and this inevitably results in demanding requirements for the
amount of the adaptation data [5]. MAP requires even more data
than MLLR.

It is desirable to have an online adaptation strategy because the
mobile devices are used in different environments at different time.
Joint compensation of additive and convolutive distortions (JAC)
in the model domain appears to be a good choice. For each input
speech utterance, JAC estimates the noise and channel distortion
parameters of the utterance online and has achieved promising
results [6][7][8], where the static part of HMM parameters is
adapted. An extended framework (JAC/VTS) is developed and
reported in [1] to adapt both static and dynamic parts of HMM
parameters, and the same framework is used to estimate the static
and dynamic parts of noise and channel mean and variance
parameters with the help of vector Taylor series (VTS). This
results in much better performance in noise robustness.

The research presented in this paper studies how to modify our
JAC/VTS algorithm that was originally developed for the normal,
uncompressed HMMs so that it can be effectively deployed in
resource-limited devices where compressed HMMs are used. In
Section 2, we outline our JAC/VTS algorithm for uncompressed
HMM parameters and the implementation steps. In Section 3, a
subspace coding (SSC) method is described for compressing HMM
parameters and three strategies for combining SSC with JAC/VTS
are discussed. Experimental evaluation of the three strategies is
provided in Section 4. We summarize our study and draw
conclusions in Section 5.

2. JAC/VTS ADAPTATION ALGORITHM

2.1 Algorithm for HMM Adaptation Given the Joint
Noise and Channel Estimates
The first part of the overall JAC/VTS algorithm is to adjust or

43331-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

adapt the original HMM parameters trained with clean speech.
This is done using the estimates of the noise and channel
parameters, which is the second part of the overall algorithm
described in subsection 2.2.

In the distortion model that we use in this work, the observed
distorted speech signal y[m] is generated from clean speech signal
x[m] with noise n[m] and channel’s impulse response h[m]
according to y[m] = x[m]*h[m] + n[m]. (1)

For the given noise mean vector nμ and channel mean

vector hμ (all in the MFCC domain), we define matrix G(.) that

depends on xμ for the k-th Gaussian in the j-th state according to

() 1

,
1

exp1

1
 −

+
= C

))--((C
diagC j,kG

hjkxn
- μμμ

. (2)

Then, the Gaussian mean vectors (the k-th Gaussian in the j-th
state) in the adapted HMM for the degraded speech become

))--((C(C hjkxn
-

hjkxjky μμμμμμ ,
1

,, exp1log +++≈ . (3)

The covariance matrix jky ,Σ in the adapted HMM is

() () ()() ()()T
n

T
jkxjky kjGIkjGIkjGkj G ,,,, ,, −Σ−+Σ≈Σ (4)

For the delta and delta/delta portions of MFCC vectors, the
adaptation formulas for the mean vector and covariance matrix are

() ()() njkxjky kjGIkj G ΔΔΔ −+≈ μμμ ,, ,, , (5)

() ()() njkxjky kjGIkj G ΔΔΔΔΔΔ −+≈ μμμ ,, ,, , (6)

() () ()() ()()T
n

T
jkxjky kjGIkjGIkjGkj G ,,,, ,, −Σ−+Σ≈Σ ΔΔΔ , (7)

() () ()() ()()T
n

T
jkxjky kjGIkjGIkjGkj G ,,,, ,, −Σ−+Σ≈Σ ΔΔΔΔΔΔ (8)

2.2 Algorithm for Re-estimation of Noise and Channel
EM algorithm is developed as the second part of the overall
JAC/VTS algorithm to jointly estimate all the noise and channel
parameters using the first-order VTS approximation. The re-
estimation formulas for the static channel mean hμ , the static and

dynamic noise means [nμ , nΔμ , nΔΔμ], and the static and dynamic

noise variances [nΣ , nΔΣ , nΔΔΣ] are given with detailed derivation

in [1], and are used in the experiments reported in this paper.

3. JAC/VTS FOR COMPRESSED HMMS

The JAC/VTS adaptation algorithm described above cannot be
applied directly for resource-constrained speech recognition (e.g.,
on mobile devices) because all of the very large number of
Gaussians in the HMM system must be updated for each utterance.
This requires a very large amount of computation as well as
memory resources. How to modify the above JAC/VTS algorithm
to meet the requirement of limited computation/memory resources
is presented next.

In this section, a simple version of subspace coding (SSC)
method is first introduced to compress the parameter of HMMs.
Then, three architectural options for combining SSC with the
JAC/VTS algorithm are given.

3.1 Subspace Coding for Compressing HMM Parameters
In the subspace coding (SSC) scheme that we have implemented
and used in our experiments, for an HMM system consisting of K
Gaussians each with fixed dimension D and with a diagonal

covariance matrix, the quantization is performed along each
separate dimension of the Gaussians. Dimension d of Gaussian k

])[],[(2 ddm kk υ is quantized into a two-dimensional

vector])[],[(2 dd nn σμ . The standard k-means clustering algorithm

is used to design the codebook with a conventional distortion
measure for Gaussian models. The centroid of a cluster is
computed by uniform quantization.

3.2 Integration strategies for JAC/VTS with SSC

Option 1: This simplest architectural option for integrating
JAC/VTS with SSC is appropriate when the storage space is the
only concern for mobile devices. In this architecture, the original
HMMs are compressed with SSC and stored in a potential mobile
device. For each incoming utterance, the SSC-compressed HMMs
are expanded as a full HMM set first, and then are adapted using
JAC/VTS as described in Section 2.
Option 2: Practical scenarios usually do not allow all HMMs to
be updated for each utterance. This would be time consuming and
memory demanding. We hence modify Option 1 into Option 2 by
modifying the HMM update block as shown in the right corner of
Figure 1. In this option, in the final stage, only the models that
have been “seen” (in the recognized transcription) during decoding
are adapted. This greatly reduces the computation and memory
requirement. After adapting HMMs, we also add a new block to
update SSC code vectors with the “seen” models while keeping the

original mapping relation in SSC, i.e., only])[],[(2 dd nn σμ are

changed. The code vector update uses two options: one is the
uniform coding, and the other is data-driven coding with sample
weights obtained from the statistics of the current speech utterance.

Initialize noise mean, channel
mean, and noise variance

Initialize noise mean, channel
mean, and noise variance

Update HMMsUpdate HMMs

Decode the utteranceDecode the utterance

Re-estimate noise mean, channel
mean, and noise variance with VTS
Re-estimate noise mean, channel

mean, and noise variance with VTS
Update HMMs only for

seen models
Update HMMs only for

seen models

Decode the utteranceDecode the utterance

Distorted
speech

Final ASR Outputs

SSCSSC

Original HMMsOriginal HMMs

Update SSC code vectors
w/ seen Gaussian (keeping
original mapping relation)

Update SSC code vectors
w/ seen Gaussian (keeping
original mapping relation)

Figure 1: Architecture of Option 2 for JAC/VTS + SSC. Only the
“seen” models are updated in the final adaptation stage.

Initialize noise mean, channel mean, and
noise variance

Update HMMs only for seen models

Decode the utterance

Re-estimate noise mean, channel mean,
and noise variance with VTS

Update HMMs only for seen
models

Decode the utterance

Distorted
speech

Final ASR Outputs

SSC

Original HMMs

Update SSC code vectors w/
seen Gaussian (keeping
original mapping relation)

Decode the utterance

Figure 2: Architecture of Option 3 for JAC/VTS + SSC. Only the
“seen” models are updated in both the adaptation stages.

4334

Option 3: There are two modules for adapting HMMs. We only
modify the adaptation of the final stage in Option 2; this is
incomplete for computation and memory reduction. It is desirable
to update all HMMs with “seen” models in both stages in Option
3. Unfortunately, we need to know what the “seen” models are in
the first HMM update block. As a result, Option 3 requires one
additional decoding step in order to provide the “seen” model list
as shown in Figure 2.

4. EXPERIMENTS

The integration of the JAC/VTS algorithm with SSC as described
in the preceding section was evaluated on the standard Aurora 2
task [9] of recognizing digit strings in noise and channel distorted
environments. The clean and multi-style training sets are used to
train the baseline maximum likelihood (ML) estimated HMMs.
These models are denoted as clean-trained and multi-trained
models. The test material consists of three sets of distorted
utterances. The data in set-A and set-B contain eight different types
of additive noise, while set-C contains two different types of noise
plus additional channel distortion. The features are 13-dimension
MFCCs, appended by their first- and second-order time
derivatives. The cepstral coefficient of order zero is used instead of
the log energy in the original script.

To show the effects of SSC, the standard complex “backend”
of HMMs provided by ETSI is used throughout our experiments.
There are 11 whole-digit HMMs, one for each of the 11 English
digits, including the word “oh”. Each HMM has 16 states, and
each state is modeled by a Gaussian mixture model (GMM) with
20 Gaussians. In addition, there are one “sil” and one “sp” model.
The “sil” model consists of 3 states, and each state is modeled by a
GMM with 36 Gaussians. The “sp” model has only one state and is
tied to the middle state of the “sil” model. This configuration gives
a total of 3664 Gaussians.

SSC is used to compress the HMMs. For each dimension of
Gaussian vectors, 256 clusters are used to represent the 3,664
Gaussians. Therefore, the compression ratio is about 14

The digit recognition accuracy results (averaged over Sets-A,
-B, and -C, with the standard Aurora2 criterion) in Row one of
Table 1 show the baseline system performance obtained using
clean-trained and multistyle-trained HMMs, respectively. Without
JAC/VTS, the clean-trained model obtains 50.6% accuracy (Acc)
and the multi-trained model obtains 89.3% Acc. After applying
SSC, the clean-trained model’s accuracy drops slightly to 48.7%
and multi-trained model drops dramatically to 83.2%. A possible
reason for the latter is the use of uniform VQ in the codebook
design.

Then, the integration strategy Option 1 is examined by
applying JAC/VTS on the compressed models with the results
shown in Row 2 of Table 1. The power of JAC/VTS is clearly
demonstrated by improving the 48.7% Acc from the clear-trained
model with SSC to 92.2% Acc. Although JAC/VTS was developed
to work with the clean-trained model, performance improvement is
also achieved for the multi-trained model with SSC by increasing
Acc from 83.2% to 93.2%. There are two possible reasons for this.
First, the multi-trained model gives better posteriors and better
transcription for unsupervised adaptation than the clean-trained
model. Second, since noise and channel parameters are trained
automatically, breaking modeling assumptions by replacing the
clean HMM with the multi-trained HMM may have been partly
compensated for.

Option 1 may not be practical for resource-limited speech
recognition without considering the computation and memory cost
when expanding and adapting all Gaussians in the HMMs from the
VQ codebook. In the remainder of this section, we will report the
evaluation of Option 2 and Option 3 systems for combining
JAC/VTS with SSC. (Several other options have been explored but
will not be reported in this paper due to space limit.) These more
practical options make tradeoffs between recognition accuracy and
computation/memory resources, with the upper and lower bounds
in the performance established in Table 1. That is, for the clean-
trained model, the accuracy’s lower bound is 48.7% and upper
bound 92.2%. For the multi-trained model, the corresponding
bounds are 83.2% and 93.2%, respectively.

Table 1: Accuracy results of the baseline system (Row 1 with no
JAC/VTS) and the Option-1 system (Row 2 with integrated
JAC/VTS and SSC)
Using
JAC/VTS

Clean-
trained

clean-trained
+SSC

multi-
trained

multi-trained
+SSC

No 50.64% 48.65% 89.34% 83.21%
Yes 92.21% 92.21% 93.21% 93.21%

The integration strategy Option 2 updates only a subset of the
HMMs from a “seen” model list, which are obtained from the
recognition result. Table 2 compares the performance within
Option 2 with different ways of using VQ. For the multi-trained
model, if only the HMMs inside the recognition transcription are
adapted in the final stage, saving the computation cost by about
half, then the recognition accuracy drops from Option 1 by only
0.5% absolute with no use of VQ. For the clean-trained model, the
corresponding accuracy drop is 1.8% absolute (Row 1). Then two
types of VQ are used to compress the HMMs after adaptation,
while keeping the original mapping relation in SSC. Data-driven
VQ is shown to perform better than uniform VQ but still reduces
recognition accuracy compared with using no VQ.

Table 2: Option-2 system performance (one best)
Update “Seen” HMMs
in the Final Stage

clean-trained
+SSC+JAC/VTS

multi-trained
+SSC+JAC/VTS

no VQ 90.43% 92.69%
data-driven VQ 88.84% 91.83%
uniform VQ 87.03% 90.85%

 Although satisfactory results are obtained, the Option-2 system
still needs to adapt all Gaussians in the HMMs in the first stage,
which may not be afforded in mobile devices. The Option-3 system
adapts all Gaussians in the HMMs from the “seen” lists in both
stages. The SSC-compressed original HMMs are used to decode
the distorted speech to obtain the transcription serving as the
“seen” model list for the first-stage HMM adaptation.
Unfortunately, as shown in Table 3, this drops performance by a
rather significant amount. For the multi-trained model, the
accuracy is dropped to 87.8% (no VQ), and for the clean-trained
model, to much lower accuracy of 67.5%. The main reason for the
performance degradation is that HMM adaptation now strongly
relies on the transcription provided by the original HMMs. For the
clean-trained SSC-compressed model, the accuracy is as low as
48.7% to begin with. Therefore, the quality of the “seen” model list
provided by the decoding transcription may be too poor to make
adaptation effective. Again, similar to Option 2, the use of VQ

4335

decreases the performance further, and data-driven VQ is also
better than uniform VQ.

Table 3: Option-3 system performance (one-best)
Update “Seen”
HMMs in All Stages

clean-trained
+SSC+JAC/VTS

multi-trained
+SSC+JAC/VTS

no VQ 67.47 % 87.81%
data-driven VQ 66.06% 86.52%
uniform VQ 64.77% 85.60%

To examine the extent to which the quality of transcription

affects the recognition performance in the Option-3 system, we
conducted an experiment that the “seen” model list in the first
HMM adaptation stage is obtained from a 5-best list of decoding,
instead of the top-1-best candidates (the latter shown in Table 3).
With more models being “seen” and adapted, the recognition
accuracy of the multi-trained model for the Option-3 system jumps
from 87.8% to 90.5%. The corresponding increase for the clean-
trained model is from 67.5% to 72.8% (Row 2 in Table 4). With an
increasing number of candidates with selecting larger N in the N-
best list, more and more HMMs will be adapted and the
performance will approach that reported in Table 2. The optimal
selection will depend on the performance tradeoff with the
computational/memory resource allowed in actual deployment.

Table 4: Option-3 system performance (one-best vs. 5-best)
Update “Seen”
Models in All Stages

clean-trained
+SSC+JAC/VTS

multi-trained
+SSC+JAC/VTS

1-best 67.47 % 87.81%
5-best 72.75% 90.49%

Here we give a very coarse analysis of the computation and

memory costs of the three options presented above. Since most of
the resources are allocated by JAC/VTS rather than decoding, the
analysis is conducted with the analysis for JAC/VTS only.

Option 1 compresses the HMMs with a compression scale of
14. Hence, it reduces the storage space with a factor of 14. Because
Option 1 adjusts all the HMMs, it does not reduce the memory
requirement. In the first stage, because the HMMs are shared with
code vectors, the computation cost is only 1/14 of that of the
uncompressed model. Therefore, the total computation cost
reduction is 100%*(1-(1/14 + 1)/2) = 46.4%.

For Option 2, in the first JAC/VTS stage all HMMs (100%)
are adapted and in the second stage only the “seen” HMMs
(roughly 1/3 in our experiment) are adapted. Thus, the relative
decrease of the memory requirement is 100%-(100%+ 33%)/2 =
33.5%. The computation cost reduction is 100%-(100%/14+
33%)/2 = 79.9%, since the models in the first stage are compressed
and 1/3 models in the second stage are adapted.

For Option 3, in the first stage, the HMMs in the 5-best list
(roughly 51%) are adapted (49% models are un-adapted and still
compressed); and in the second stage only the “seen” HMMs are
adapted. Hence, the relative memory reduction is 100%-(51%+
33%*(51%+49%/14))/2 = 65.5% . The reduction of computation is
100%-(51%/14+ 33% * (51%+49%/14))/2 = 89.2%.

5. SUMMARY AND CONCLUSION

In this paper, we have presented our recent study aimed to
integrate our earlier successful JAC/VTS algorithm into the HMMs
compressed by SSC for model adaptation on resource-limited

devices. The goal of this study is to explore the feasibility of noise-
robust ASR in mobile devices with computation, memory, and
storage constraints.

Three integration options are proposed and evaluated that
save, to a varying degree, computation cost, and memory, and/or
storage compared with the straightforward JAC/VTS on the
regular, uncompressed HMMs. Evaluated on the Aurora2 task, the
original clean-trained and multi-trained models obtained 92.2%
and 93.2% accuracy after being adapted by JAC/VTS. The SSC-
compressed models achieve the same accuracy level with Option 1,
which saves storage by a factor of 14 but not computation and
memory. In Option 2, recognition accuracy drops somewhat to
90.4% (clean-trained) and 92.7% (multi-trained), with nearly half
computational/memory cost. In the most compact Option 3, the
accuracy drops further to 72.8% (clean-trained) and 90.5% (multi-
trained), given a 5-best list in the first decoding stage. This
performance degradation is attributed mainly to the unsupervised
nature of JAC/VTS.

Three immediate research issues will be addressed in our
future work. First, the quality of compressed HMMs needs
improvement so as to overcome the difficulty caused by the
unsupervised nature of JAC/VTS. Since the current, initial study
reported in this paper is focused on how to combine SSC with
JAC/VTS, little effort has been devoted to the quality of SSC.
Second, confusion patterns will be used to replace the N-best list to
provide “seen” model lists for adapting selected HMMs. This will
not only reduce the computation requirement but also improve the
“seen” list quality, especially for clean-trained models. Third, the
JAC/VTS algorithm will be further improved to provide greater
effectiveness of HMM adaptation [1].

6. REFERENCES

[1] J. Li, L. Deng, D. Yu, Y. Gong, and A. Acero, “A unified framework
of HMM adaptation with joint compensation of additive and
convolutive distortions,” submitted to IEEE Trans. Audio, Speech,
and Language Proc., 2007.

[2] E. Bocchieri and B. K. -W. Mak, “Subspace distribution clustering
hidden Markov model,” IEEE Trans. Speech and Audio Proc., vol.
9, no. 3, pp. 264-275, 2001.

[3] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density HMMs,”
Comput., Speech, Lang,, vol. 9, no. 2, pp. 171–185, 1995.

[4] J. -L. Gauvain and C. -H. Lee, “Maximum a posteriori estimation for
multivariate Gaussian mixture observations of Markov chains,”
IEEE Trans. Speech Audio Processing, vol. 2, pp. 291–298, 1994.

[5] X. Cui and A. Alwan, “Noise robust speech recognition using
feature compensation based on polynomial regression of utterance
SNR,” IEEE Trans. Speech and Audio Proc., vol. 13, pp. 1161-
1172, 2005.

[6] Y. Gong, “A method of joint compensation of additive and
convolutive distortions for speaker-independent speech recognition,”
IEEE Trans. Speech and Audio Proc., vol. 13, no. 5, pp. 975-983,
2005.

[7] D. Y. Kim, C. K. Un, and N. S. Kim, “Speech recognition in noisy
environments using first order vector Taylor series,” Speech
Communication, vol. 24, pp. 39-49, 1998.

[8] P. Moreno. Speech Recognition in Noisy Environments. PhD.
Thesis, Carnegie Mellon University, 1996.

[9] H. G. Hirsch and D. Pearce, “The Aurora experimental framework
for the performance evaluation of speech recognition systems under
noisy conditions,” Proc. ISCA ITRW ASR, 2000.

4336

