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ABSTRACT 
 

Recently, we successfully developed and reported a new 
unsupervised online adaptation technique, which jointly 
compensates for additive and convolutive distortions with vector 
Taylor series (JAC/VTS), to adjust (uncompressed) HMMs under 
acoustically distorted environments [1]. In this paper, we extend 
that technique to adapt compressed HMMs using JAC/VTS where 
limited computation and/or memory resources are available for 
speech recognition (e.g., on mobile devices). Subspace coding 
(SSC) is developed and used to quantize each dimension of the 
multivariate Gaussians in the compressed HMMs. Three 
algorithmic design options are proposed and evaluated that 
combine SSC with JAC/VTS, where three different types of 
tradeoffs are made between recognition accuracy and the required 
computation/memory/storage resources. The strengths and 
weaknesses of these three options are discussed and shown on the 
Aurora2 task of noise-robust speech recognition. The first option 
greatly reduces the storage space and gives 93.2% accuracy, which 
is the same as the baseline accuracy but with little reduction in the 
run-time computation/memory cost. The second option reduces 
about 79.9% of the computation cost and about 33.5% of the 
memory requirement at a very small price of 0.5% decrease of 
accuracy (to 92.7%). The third option cuts about 89.2% of the 
computation cost and about 65.5% of the memory requirement 
while reducing recognition accuracy by 2.7% (to 90.5%). 

 
Index Terms—resource constraint, subspace coding, joint 

compensation, additive and convolutive distortions, mobile devices 

1. INTRODUCTION 

With the rapid increase in the usage sceneries of mobile devices, it 
is natural to put automatic speech recognition (ASR) on mobile 
devices, which are ideal platforms for hands-free applications. Two 
critical factors affecting the applications on mobile devices are 
speed and memory requirements as they are always resource 
limited. Usually, speech recognition is designed running on 
machines with high computation power and large memory. To be 
used in mobile devices, ASR systems must be tailored to meet the 
computation and memory limits. A popular choice is to use vector 
quantization (VQ) and compress the HMM parameters. Different 
VQ methods have been proposed to quantize the Gaussian vectors 
or sub-vectors [2].  

Differing from other applications in mobile devices, speech 
recognition faces the additional, special issue of noise robustness. 
Noise robustness in speech recognition remains an outstanding and 
difficult problem despite many years of research and investment.     

Developing noise robustness techniques for mobile applications is 
even harder. Because of the very nature of mobility, mobile 
devices can be used in any environments, often acoustically 
adverse. The speech signals input into mobile devices can be 
distorted by many possible types of distortions, including additive 
and convolutive distortions and their mixes, which are not easy to 
predict accurately during recognizers’ development. Therefore, the 
actual models for the distorted speech deviate from the original 
models trained in advance. The originally trained models may be 
adapted to fit the environment with maximum likelihood linear 
regression (MLLR) [3] or maximum a posterior (MAP) [4]. 
However, to achieve acceptable performance the MLLR method 
often requires significantly more than one transformation matrix, 
and this inevitably results in demanding requirements for the 
amount of the adaptation data [5]. MAP requires even more data 
than MLLR.  

It is desirable to have an online adaptation strategy because the 
mobile devices are used in different environments at different time. 
Joint compensation of additive and convolutive distortions (JAC) 
in the model domain appears to be a good choice. For each input 
speech utterance, JAC estimates the noise and channel distortion 
parameters of the utterance online and has achieved promising 
results [6][7][8], where the static part of HMM parameters is 
adapted. An extended framework (JAC/VTS) is developed and 
reported in [1] to adapt both static and dynamic parts of HMM 
parameters, and the same framework is used to estimate the static 
and dynamic parts of noise and channel mean and variance 
parameters with the help of vector Taylor series (VTS). This 
results in much better performance in noise robustness. 

The research presented in this paper studies how to modify our 
JAC/VTS algorithm that was originally developed for the normal, 
uncompressed HMMs so that it can be effectively deployed in 
resource-limited devices where compressed HMMs are used. In 
Section 2, we outline our JAC/VTS algorithm for uncompressed 
HMM parameters and the implementation steps. In Section 3, a 
subspace coding (SSC) method is described for compressing HMM 
parameters and three strategies for combining SSC with JAC/VTS 
are discussed. Experimental evaluation of the three strategies is 
provided in Section 4. We summarize our study and draw 
conclusions in Section 5. 

2. JAC/VTS ADAPTATION ALGORITHM 

2.1 Algorithm for HMM Adaptation Given the Joint 
Noise and Channel Estimates  
The first part of the overall JAC/VTS algorithm is to adjust or 
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adapt the original HMM parameters trained with clean speech. 
This is done using the estimates of the noise and channel 
parameters, which is the second part of the overall algorithm 
described in subsection 2.2. 

In the distortion model that we use in this work, the observed 
distorted speech signal y[m] is generated from clean speech signal 
x[m] with noise n[m] and channel’s impulse response h[m] 
according to   y[m] = x[m]*h[m] + n[m].               (1) 

For the given noise mean vector nμ  and channel mean 

vector hμ (all in the MFCC domain), we define matrix G(.) that 

depends on xμ for the k-th Gaussian in the j-th state according to 
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Then, the Gaussian mean vectors (the k-th Gaussian in the j-th 
state) in the adapted HMM for the degraded speech become 
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The covariance matrix jky ,Σ  in the adapted HMM is 
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For the delta and delta/delta portions of MFCC vectors, the 
adaptation formulas for the mean vector and covariance matrix are  
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2.2 Algorithm for Re-estimation of Noise and Channel 
EM algorithm is developed as the second part of the overall 
JAC/VTS algorithm to jointly estimate all the noise and channel 
parameters using the first-order VTS approximation. The re-
estimation formulas for the static channel mean hμ , the static and 

dynamic noise means [ nμ , nΔμ , nΔΔμ ], and the static and dynamic 

noise variances [ nΣ , nΔΣ , nΔΔΣ ] are given with detailed derivation 

in [1], and are used in the experiments reported in this paper. 

3. JAC/VTS FOR COMPRESSED HMMS  

The JAC/VTS adaptation algorithm described above cannot be 
applied directly for resource-constrained speech recognition (e.g., 
on mobile devices) because all of the very large number of 
Gaussians in the HMM system must be updated for each utterance. 
This requires a very large amount of computation as well as 
memory resources. How to modify the above JAC/VTS algorithm 
to meet the requirement of limited computation/memory resources 
is presented next.  

In this section, a simple version of subspace coding (SSC) 
method is first introduced to compress the parameter of HMMs. 
Then, three architectural options for combining SSC with the 
JAC/VTS algorithm are given. 

3.1 Subspace Coding for Compressing HMM Parameters 
In the subspace coding (SSC) scheme that we have implemented 
and used in our experiments, for an HMM system consisting of K 
Gaussians each with fixed dimension D and with a diagonal 

covariance matrix, the quantization is performed along each 
separate dimension of the Gaussians. Dimension d of Gaussian k 

])[],[( 2 ddm kk υ  is quantized into a two-dimensional 

vector ])[],[( 2 dd nn σμ . The standard k-means clustering algorithm 

is used to design the codebook with a conventional distortion 
measure for Gaussian models. The centroid of a cluster is 
computed by uniform quantization. 

3.2 Integration strategies for JAC/VTS with SSC 

Option 1: This simplest architectural option for integrating 
JAC/VTS with SSC is appropriate when the storage space is the 
only concern for mobile devices. In this architecture, the original 
HMMs are compressed with SSC and stored in a potential mobile 
device. For each incoming utterance, the SSC-compressed HMMs 
are expanded as a full HMM set first, and then are adapted using 
JAC/VTS as described in Section 2. 
Option 2: Practical scenarios usually do not allow all HMMs to 
be updated for each utterance. This would be time consuming and 
memory demanding. We hence modify Option 1 into Option 2 by 
modifying the HMM update block as shown in the right corner of 
Figure 1. In this option, in the final stage, only the models that 
have been “seen” (in the recognized transcription) during decoding 
are adapted. This greatly reduces the computation and memory 
requirement. After adapting HMMs, we also add a new block to 
update SSC code vectors with the “seen” models while keeping the 

original mapping relation in SSC, i.e., only ])[],[( 2 dd nn σμ  are 

changed. The code vector update uses two options: one is the 
uniform coding, and the other is data-driven coding with sample 
weights obtained from the statistics of the current speech utterance. 

Initialize noise mean, channel 
mean, and noise variance

Initialize noise mean, channel 
mean, and noise variance

Update HMMsUpdate HMMs

Decode the utteranceDecode the utterance

Re-estimate noise mean, channel 
mean, and noise variance with VTS
Re-estimate noise mean, channel 

mean, and noise variance with VTS
Update HMMs only for 

seen models
Update HMMs only for 
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Decode the utteranceDecode the utterance

Distorted 
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Final ASR Outputs
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Original HMMsOriginal HMMs

Update SSC code vectors 
w/ seen Gaussian (keeping 
original mapping relation)

Update SSC code vectors 
w/ seen Gaussian (keeping 
original mapping relation)

 
Figure 1: Architecture of Option 2 for JAC/VTS + SSC. Only the 
“seen” models are updated in the final adaptation stage.  

Initialize noise mean, channel mean, and 
noise variance

Update HMMs only for seen models

Decode the utterance

Re-estimate noise mean, channel mean, 
and noise variance with VTS
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Decode the utterance

 
Figure 2: Architecture of Option 3 for JAC/VTS + SSC.  Only the 
“seen” models are updated in both the adaptation stages. 

4334



Option 3: There are two modules for adapting HMMs. We only 
modify the adaptation of the final stage in Option 2; this is 
incomplete for computation and memory reduction. It is desirable 
to update all HMMs with “seen” models in both stages in Option 
3. Unfortunately, we need to know what the “seen” models are in 
the first HMM update block. As a result, Option 3 requires one 
additional decoding step in order to provide the “seen” model list 
as shown in Figure 2. 

4. EXPERIMENTS 

The integration of the JAC/VTS algorithm with SSC as described 
in the preceding section was evaluated on the standard Aurora 2 
task [9] of recognizing digit strings in noise and channel distorted 
environments. The clean and multi-style training sets are used to 
train the baseline maximum likelihood (ML) estimated HMMs. 
These models are denoted as clean-trained and multi-trained 
models. The test material consists of three sets of distorted 
utterances. The data in set-A and set-B contain eight different types 
of additive noise, while set-C contains two different types of noise 
plus additional channel distortion. The features are 13-dimension 
MFCCs, appended by their first- and second-order time 
derivatives. The cepstral coefficient of order zero is used instead of 
the log energy in the original script.  

To show the effects of SSC, the standard complex “backend” 
of HMMs provided by ETSI is used throughout our experiments. 
There are 11 whole-digit HMMs, one for each of the 11 English 
digits, including the word “oh”. Each HMM has 16 states, and 
each state is modeled by a Gaussian mixture model (GMM) with 
20 Gaussians. In addition, there are one “sil” and one “sp” model. 
The “sil” model consists of 3 states, and each state is modeled by a 
GMM with 36 Gaussians. The “sp” model has only one state and is 
tied to the middle state of the “sil” model. This configuration gives 
a total of 3664 Gaussians.  

SSC is used to compress the HMMs. For each dimension of 
Gaussian vectors, 256 clusters are used to represent the 3,664 
Gaussians. Therefore, the compression ratio is about 14 

The digit recognition accuracy results (averaged over Sets-A, 
-B, and -C, with the standard Aurora2 criterion) in Row one of 
Table 1 show the baseline system performance obtained using 
clean-trained and multistyle-trained HMMs, respectively. Without 
JAC/VTS, the clean-trained model obtains 50.6% accuracy (Acc) 
and the multi-trained model obtains 89.3% Acc. After applying 
SSC, the clean-trained model’s accuracy drops slightly to 48.7% 
and multi-trained model drops dramatically to 83.2%. A possible 
reason for the latter is the use of uniform VQ in the codebook 
design. 

Then, the integration strategy Option 1 is examined by 
applying JAC/VTS on the compressed models with the results 
shown in Row 2 of Table 1. The power of JAC/VTS is clearly 
demonstrated by improving the 48.7% Acc from the clear-trained 
model with SSC to 92.2% Acc. Although JAC/VTS was developed 
to work with the clean-trained model, performance improvement is 
also achieved for the multi-trained model with SSC by increasing 
Acc from 83.2% to 93.2%. There are two possible reasons for this. 
First, the multi-trained model gives better posteriors and better 
transcription for unsupervised adaptation than the clean-trained 
model. Second, since noise and channel parameters are trained 
automatically, breaking modeling assumptions by replacing the 
clean HMM with the multi-trained HMM may have been partly 
compensated for.  

Option 1 may not be practical for resource-limited speech 
recognition without considering the computation and memory cost 
when expanding and adapting all Gaussians in the HMMs from the 
VQ codebook. In the remainder of this section, we will report the 
evaluation of Option 2 and Option 3 systems for combining 
JAC/VTS with SSC. (Several other options have been explored but 
will not be reported in this paper due to space limit.) These more 
practical options make tradeoffs between recognition accuracy and 
computation/memory resources, with the upper and lower bounds 
in the performance established in Table 1. That is, for the clean-
trained model, the accuracy’s lower bound is 48.7% and upper 
bound 92.2%. For the multi-trained model, the corresponding 
bounds are 83.2% and 93.2%, respectively. 

 
Table 1: Accuracy results of the baseline system (Row 1 with no 
JAC/VTS) and the Option-1 system (Row 2 with integrated 
JAC/VTS and SSC) 
Using 
JAC/VTS 

Clean-
trained 

clean-trained 
+SSC 

multi-
trained 

multi-trained 
+SSC 

No  50.64% 48.65% 89.34% 83.21% 
Yes 92.21% 92.21% 93.21% 93.21% 
 

The integration strategy Option 2 updates only a subset of the 
HMMs from a “seen” model list, which are obtained from the 
recognition result. Table 2 compares the performance within 
Option 2 with different ways of using VQ. For the multi-trained 
model, if only the HMMs inside the recognition transcription are 
adapted in the final stage, saving the computation cost by about 
half, then the recognition accuracy drops from Option 1 by only 
0.5% absolute with no use of VQ. For the clean-trained model, the 
corresponding accuracy drop is 1.8% absolute (Row 1). Then two 
types of VQ are used to compress the HMMs after adaptation, 
while keeping the original mapping relation in SSC. Data-driven 
VQ is shown to perform better than uniform VQ but still reduces 
recognition accuracy compared with using no VQ. 
 

Table 2: Option-2 system performance (one best) 
Update “Seen”  HMMs 
in the Final Stage 

clean-trained 
+SSC+JAC/VTS 

multi-trained 
+SSC+JAC/VTS 

no VQ 90.43% 92.69% 
data-driven VQ 88.84% 91.83% 
uniform VQ 87.03% 90.85% 
 
      Although satisfactory results are obtained, the Option-2 system 
still needs to adapt all Gaussians in the HMMs in the first stage, 
which may not be afforded in mobile devices. The Option-3 system 
adapts all Gaussians in the HMMs from the “seen” lists in both 
stages. The SSC-compressed original HMMs are used to decode 
the distorted speech to obtain the transcription serving as the 
“seen” model list for the first-stage HMM adaptation. 
Unfortunately, as shown in Table 3, this drops performance by a 
rather significant amount. For the multi-trained model, the 
accuracy is dropped to 87.8% (no VQ), and for the clean-trained 
model, to much lower accuracy of 67.5%. The main reason for the 
performance degradation is that HMM adaptation now strongly 
relies on the transcription provided by the original HMMs. For the 
clean-trained SSC-compressed model, the accuracy is as low as 
48.7% to begin with. Therefore, the quality of the “seen” model list 
provided by the decoding transcription may be too poor to make 
adaptation effective. Again, similar to Option 2, the use of VQ 

4335



decreases the performance further, and data-driven VQ is also 
better than uniform VQ.  
 

Table 3: Option-3 system performance (one-best) 
Update “Seen”  
HMMs in All Stages 

clean-trained 
+SSC+JAC/VTS 

multi-trained 
+SSC+JAC/VTS 

no VQ 67.47 % 87.81% 
data-driven VQ 66.06% 86.52% 
uniform VQ 64.77% 85.60% 

 
To examine the extent to which the quality of transcription 

affects the recognition performance in the Option-3 system, we 
conducted an experiment that the “seen” model list in the first 
HMM adaptation stage is obtained from a 5-best list of decoding, 
instead of the top-1-best candidates (the latter shown in Table 3). 
With more models being “seen” and adapted, the recognition 
accuracy of the multi-trained model for the Option-3 system jumps 
from 87.8% to 90.5%. The corresponding increase for the clean-
trained model is from 67.5% to 72.8% (Row 2 in Table 4). With an 
increasing number of candidates with selecting larger N in the N-
best list, more and more HMMs will be adapted and the 
performance will approach that reported in Table 2. The optimal 
selection will depend on the performance tradeoff with the 
computational/memory resource allowed in actual deployment. 

 
Table 4: Option-3 system performance (one-best vs. 5-best) 
Update “Seen” 
Models in All Stages 

clean-trained 
+SSC+JAC/VTS 

multi-trained 
+SSC+JAC/VTS 

1-best 67.47 % 87.81% 
5-best 72.75% 90.49% 

 
Here we give a very coarse analysis of the computation and 

memory costs of the three options presented above. Since most of 
the resources are allocated by JAC/VTS rather than decoding, the 
analysis is conducted with the analysis for JAC/VTS only. 

Option 1 compresses the HMMs with a compression scale of 
14. Hence, it reduces the storage space with a factor of 14. Because 
Option 1 adjusts all the HMMs, it does not reduce the memory 
requirement. In the first stage, because the HMMs are shared with 
code vectors, the computation cost is only 1/14 of that of the 
uncompressed model. Therefore, the total computation cost 
reduction is 100%*(1-(1/14 + 1)/2) = 46.4%.  

For Option 2, in the first JAC/VTS stage all HMMs (100%) 
are adapted and in the second stage only the “seen” HMMs 
(roughly 1/3 in our experiment) are adapted. Thus, the relative 
decrease of the memory requirement is 100%-(100%+ 33%)/2 = 
33.5%. The computation cost reduction is 100%-(100%/14+ 
33%)/2 = 79.9%, since the models in the first stage are compressed 
and 1/3 models in the second stage are adapted. 

For Option 3, in the first stage, the HMMs in the 5-best list 
(roughly 51%) are adapted (49% models are un-adapted and still 
compressed); and in the second stage only the “seen” HMMs are 
adapted. Hence, the relative memory reduction is 100%-(51%+ 
33%*(51%+49%/14))/2 = 65.5% . The reduction of computation is 
100%-(51%/14+ 33% * (51%+49%/14) )/2 = 89.2%. 

5. SUMMARY AND CONCLUSION 

In this paper, we have presented our recent study aimed to 
integrate our earlier successful JAC/VTS algorithm into the HMMs 
compressed by SSC for model adaptation on resource-limited 

devices. The goal of this study is to explore the feasibility of noise-
robust ASR in mobile devices with computation, memory, and 
storage constraints.  

Three integration options are proposed and evaluated that 
save, to a varying degree, computation cost, and memory, and/or 
storage compared with the straightforward JAC/VTS on the 
regular, uncompressed HMMs. Evaluated on the Aurora2 task, the 
original clean-trained and multi-trained models obtained 92.2% 
and 93.2% accuracy after being adapted by JAC/VTS. The SSC-
compressed models achieve the same accuracy level with Option 1, 
which saves storage by a factor of 14 but not computation and 
memory. In Option 2, recognition accuracy drops somewhat to 
90.4% (clean-trained) and 92.7% (multi-trained), with nearly half 
computational/memory cost. In the most compact Option 3, the 
accuracy drops further to 72.8% (clean-trained) and 90.5% (multi-
trained), given a 5-best list in the first decoding stage. This 
performance degradation is attributed mainly to the unsupervised 
nature of JAC/VTS. 

Three immediate research issues will be addressed in our 
future work. First, the quality of compressed HMMs needs 
improvement so as to overcome the difficulty caused by the 
unsupervised nature of JAC/VTS. Since the current, initial study 
reported in this paper is focused on how to combine SSC with 
JAC/VTS, little effort has been devoted to the quality of SSC. 
Second, confusion patterns will be used to replace the N-best list to 
provide “seen” model lists for adapting selected HMMs. This will 
not only reduce the computation requirement but also improve the 
“seen” list quality, especially for clean-trained models. Third, the 
JAC/VTS algorithm will be further improved to provide greater 
effectiveness of HMM adaptation [1]. 
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