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ABSTRACT

Automatic phonetic reconstruction of medical dictations from non-
literal and automatically recognized speech transcripts leads to
closer-to-literal transcripts for training. In this paper, we introduce
an extended alignment method assessing multiple levels of text seg-
mentation and show how open issues like wrong segmentation in
the recognized transcript can be resolved. Furthermore, the effect of
context-dependent reconstruction and the phonetic similarity thresh-
old on the quality of the reconstructed transcription is measured. Ex-
periments show an increase in precision between 0.7% and 4.7% ab-
solute without loss in recall for the combined system incorporating
all of these techniques in comparison to the system in [1].
Index Terms: Automatic transcription, phonetic similarity, text
alignment, syllabi cation, dictation

1. INTRODUCTION

Literal transcriptions of spoken input are a valuable resource for
training the acoustic and language models in automatic speech
recognition (ASR). For large vocabulary continuous speech recogni-
tion (LVCSR) systems, human transcriptions are expensive and time
consuming. Automatic generation of literal transcriptions is thus a
desirable, but challenging task.

In medical dictation systems, large amounts of non-literal tran-
scriptions of spoken input, produced by trained typists are available
in the form of medical reports. In contrast to literal transcriptions,
these do not accurately represent spoken input because of inherent
differences between spoken and written language like lled pauses,
self-corrections, short forms, etc. Furthermore, medical reports are
produced to conform to a standardized, written form. The original
utterance has possibly been reformulated or restructured by the
typist as shown in the following example:

she basically lays in bed non-responsive (spoken)
she basically lays in bed not responsive (recognized)
Basically she is nonresponsive. (written)
Previous work on using non-literal transcripts for training can

be found for the domain of academic lectures [2], closed captions
in broadcast news [3], predicting ASR errors [4], and also medical
dictations [5]. In a previous paper [1], we presented a phonetic simi-
larity measure for matching automatically recognized transcripts and
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non-literal medical reports to reconstruct a literal transcription of a
medical dictation. Mismatches between the texts were either clas-
si ed as corrected ASR errors, assuming that ASR errors are pho-
netically similar, or possible reformulations inserted by the typist in
case of phonetic dissimilarity. The simple reconstruction based on
this classi cation showed signi cant improvements on the word er-
ror rate in comparison with a reference transcription, but was not
able to deal with certain types of errors, like wrong segmentations in
the recognized texts, or massive reductions due to fast speech.

This paper presents two main improvements to the initial ap-
proach. First, a re ned text alignment that explores multiple levels
of text segmentation to better handle alignment mismatches caused
by segmentation errors in ASR. Second, a comparison of a rule-
based and a data-driven text reconstruction step that interprets the
enhanced alignment, before it generates a reconstruction hypothesis.
In an experimental study, we demonstrate the effects of the enhanced
alignment with rules which use context and overlap information on
syllable level and automatic classi ers operating with the same fea-
tures. Furthermore, the in uence of the phonetic similarity threshold
is shown. Based on the experimental results, we discuss the contri-
bution of each implemented technique and conclude the paper with
an outlook for future work. In the following, we will refer to the au-
tomatically recognized draft transcription as the recognized text, to
the manually corrected medical report as the written text, and to the
literal reference transcription of the dictation as the reference text.

2. LEVELS OF TEXT SEGMENTATION

In general, text alignment is done for a complete recognized respec-
tively written text document - at the document level. The following
levels of text segmentation were selected primarily based on obser-
vations in data and not on the basis of linguistic knowledge:

• Mismatch regions: We de ne a mismatch region (ERR) as a se-
quence of the edit operations insertion (INS), deletion (DEL), and
substitution (SUB) in a word level alignment. This de nition is
helpful, since actual mismatches can be composed of several ad-
jacent mismatch edit operations as shown in table 1. Assuming
that the word order in the aligned documents is not deviating too
much, focusing on the mismatch regions is an appropriate simpli-
cation of the alignment task. To ensure that a mismatch region
was not split, we allow a mismatch region to be interrupted by at
most one identity edit operation (COR).

• Words / short phrases: Text alignment is expressed by edit op-
erations at word level. The segmentation is de ned by the ASR
lexicon and nal automatic formatting applied to the recognized
text. Apart from lexical words, short phrases are included as well
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in terms of formatted entities like dates, times, physical values (=
number + physical unit), or determiner phrases like ’the patient’.

• Syllables: We observed in our data that segmentation errors in
recognized texts were more likely to occur at syllable boundaries
than at any other position within a word. This observation is in ac-
cordance with previous studies [6] which found the syllable level
to be more robust against variation in conversational speech than
the phoneme level.

• Phonemes: Phonetic similarity matching itself is done at phoneme
level, the lowest matching level. The sequence of phonemes which
produced the recognized text is compared to an automatic pho-
netic transcription of the written text.

3. TEXT ALIGNMENT AND RECONSTRUCTION

The reconstruction task is a three-step process. First, recognized and
written text are aligned with standard Levenshtein alignment [7] to
detect mismatch regions. Then, the mismatch regions are re-aligned,
to ensure that correspondences between texts are correctly labelled.
Finally, a reconstruction hypothesis is generated by applying recon-
struction rules to the previously calculated text alignment.

3.1. Phonetic similarity matching

Both, re-alignment and reconstruction are based on phonetic similar-
ity matching [1]. A phonetic scoring function, de ned on a stochas-
tic string edit distance model is used to compute a similarity score of
two phoneme strings. In the stochastic model, similarity is de ned
as the negative log-likelihood of the joint probabilities for the input
strings. The scoring function is normalized with respect to the input
string length and a score scale of 0.0 (dissimilar) to 10.0 (identical).
The similarity decision is made with an adjustable threshold t.

3.2. Automatic syllabi cation

An annotated expert phonetic lexicon for the highly speci c vocab-
ulary used in the medical domain was not available for our data.
Therefore, an automatic syllabi cation algorithm was used to deter-
mine syllables from words online [8]. The algorithm is based on Op-
timality Theory (OT), where phonological processes are modelled by
applying ranked constraints on base forms to obtain surface forms.
As primary stress information was not available in the phonetic lex-
icon, the algorithm had to be modi ed. The modi cation degraded
the performance of the algorithm in terms of accuracy of the syllable
boundaries, but not the number of detected syllables. In an informal
test, it still returned correct results for 80 out of 100 words.

With this algorithm, the word level units for recognized and writ-
ten text are split into sequences of syllables. The alignment algo-
rithm is then applied recursively on the syllable sequences. Adja-
cent words are not only aligned, but also tested for overlap on sylla-
ble level. The word level alignment label is therefore replaced by an
overlap symbol string. The resulting alignment expresses both, word
and syllable level correspondences. Consider the sample alignment
in table 1. Within the rst mismatch region, the word Charcot was
incorrectly recognized and split into sharp and cold. The syl-
lable level alignment, however, shows that sharp corresponds to
the rst, and cold to the second syllable of Charcot. As syllable
alignment is determined based on phonetic similarity, the alignment
may sometimes look confusing. The short words of and in are not
aligned with each other, since in is phonetically more similar to the
last syllable of ulceration than to of.

3.3. Rule-based text reconstruction

The hypothesized literal transcription is generated with the help of
reconstruction rules. These rules de ne which parts of the recog-
nized or written text are selected to appear in the reconstructed text.
Each rule is de ned for a sequence of alignment labels. Whenever
the label sequence appears in the alignment, the rule applies and an
action speci ed by the rule is executed. For better control, the rule
action can be conditioned on e.g. phonetic similarity between the
matched words. Since more than one rule can match for a certain
sequence of alignment labels, rules match on a rst-come rst-serve
basis, meaning that rule precedence has an effect on the result. In the
experiments, results were only given for rule orderings which gave
the best performance.

To test the effects of the previously described techniques, we
de ned the following reconstruction rules, where an alignment label
is either the identity edit operation (COR) or a sequence of syllable
overlap symbols [=, <, >] (c.f. table 1):
• Baseline: only identical words in the alignment (COR) are recon-
structed, mismatch regions are ignored.

• Recognized-only (REC): for each alignment label, select the rec-
ognized text for reconstruction.

• Written-only (WRI): for each alignment label, select the written
text for reconstruction.

• Phonetic similarity (PHO): for alignment labels containing
matching syllables (=), select written text, if phonetic similarity
is higher than a threshold value, and recognized text otherwise.
REC and WRI are the extreme cases, if the similarity threshold
value is maximum or zero.

• Context (CTX): for sequences of 1, 2, or 3 alignment labels con-
taining at least one syllable match (=), select written text, if pho-
netic similarity is higher than a threshold value. The idea behind
this rule is that longer corresponding regions in the alignment are
more likely to be real correspondences.

• Overlap, greedy (OVG): for sequences of 2 or 3 alignment la-
bels, where inserted or deleted syllables (</>) are either preceded
or succeeded by at least one matching syllable (=), select written
text, if phonetic similarity is higher than a threshold value. This
rule collects all word sequences showing any possible overlap at
syllable level without regard of the matching order.

• Overlap, selective (OVS): for sequences of 2, 3, or 4 alignment
labels, where matching syllables (=) are rst succeeded by in-
serted (<), and then preceded by deleted (>) syllables, select writ-
ten text if phonetic similarity is higher than a threshold value. This
pattern is typical for segmentation errors in the recognized text.
Table 1 illustrates the effect of each rule on a sample alignment.

The phonetic similarity rule resolves each alignment line on its own
and therefore fails in both mismatch regions. The context rule, how-
ever, performs much better, as it is activated whenever a group of
matching syllables appears. Still, it is not enough as it does not han-
dle stand-alone insertions or deletions appropriately. The greedy
overlap rule can handle insertions and deletions whenever they ap-
pear in terms of a syllable overlap. However, it is not activated when
there is a direct match (though ↔ no). The selective overlap
rule, nally, matches only the precise rst segmentation error, where
the syllable counts exactly match. Accidental matches are therefore
impossible. This example indicates that combination of rules may
be bene cial.

3.4. Data-driven text reconstruction

For data-driven text reconstruction, we use different classi ers to
produce the hypothesized literal transcription which is the 2-class
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written text ↔ recognized text PHO CTX OVG OVS reference text
a COR a a a a a a

Char·cot =< sharp Charcot Charcot Charcot Charcot Charcot
>= cold cold

foot = foot foot foot foot - foot
, < - - , -

though = no though though - - though
there is COR there is there is there is there is there is there is

no COR no no no no no no
ul·ce·ra·tion ==== al·te·ra·tion ulceration ulceration ulceration - ulceration

<<<= in in -
of < - - of - of

skin COR skin skin skin skin skin skin

Table 1. A sample alignment containing two mismatch regions (dashed boxes), together with reconstruction rule results. Syllable boundaries
are marked with dots [·]. Note that the [=]-overlap symbol just indicates correspondence, not equality of syllables, in contrast to the insertion
[<] and deletion [>] symbols which label non-matching syllables. The solid boxes highlight lines affected by each rule, dashes [−] mark
parts not covered by the rule.

output of a classi er, i.e., either written text or recognized text. For
classi er training, the class labels are produced by aligning the ref-
erence text with the written text. The features are derived from the
automatic alignment and the phonetic similarity score, computed for
the aligned written and recognized phoneme strings. In addition, this
score is derived for 3 consecutive phoneme strings to model the de-
pendency of adjacent words in the classi er. The remaining features
are computed from the sequence of syllable symbols ([=], [<], [>]).
Therefore, the sequence is split into 3 equal parts. After assigning
values to the symbols ([=] : 0,[<] : -1,[>] : 1), the mean and standard
deviation of each part serve as feature. The last feature employed de-
notes the length of the syllable symbol sequence. In sum, 9 features
are used with the following classi cation approaches [9]:
• k-NN: k-nearest neighbor classi er. For table 2, k = 9.
• NN: Neural network with 3 layers. The number of neurons in the
input and output layer is set to the number of features and the num-
ber of classes, respectively. The number of neurons in the hidden
layer is set to 70. We use Levenberg-Marquardt backpropagation
for training, a hyperbolic tangent sigmoid transfer function for the
neurons in the input and hidden layer, and a linear transfer func-
tion in the output layer.

• SVM: The support vector machine with the radial basis function
(RBF) kernel uses two parameters C∗ and σ, where C∗ is the
penalty parameter for the errors of the non-separable case and σ

is the parameter for the RBF kernel. We set the values for these
parameters to C∗ = 1 and σ = 1.5.
The optimal choice of the parameters, kernel function, number

of neighbors, and transfer functions of the above mentioned classi-
ers has been established during extensive experiments. Five-fold
cross-validation is used to produce the results with the classi ers.
Throughout our experiments, we use exactly the same data parti-
tioning for each training procedure.

4. EXPERIMENTS

The reconstruction rules were tested on an evaluation corpus by us-
ing them for the reconstruction of a literal transcription. The evalu-
ation corpus consisted of 735 written and recognized texts of about
335.000 words, as well as manual reference texts for validation of the
hypothesized reconstruction. The texts were selected such that they
equally represent three ranges of average word error rates (WER)
for the recognized text. Hesitations and incomplete words were re-
moved beforehand to avoid biased results.

5-13% WER 20-25% WER 40-45% WER
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Baseline 100 78.9 88.2 99.9 64.6 78.4 99.5 46.0 62.9
REC 83.3 93.4 88.1 79.0 85.7 82.2 66.7 71.9 69.2
WRI 92.8 93.1 92.9 89.9 89.6 89.8 85.9 85.4 85.6
PHO 96.3 91.6 93.9 93.1 84.5 88.6 87.4 72.5 79.3
CTX 97.6 90.4 93.8 95.4 82.8 88.7 93.1 69.8 79.8
OVG 97.9 86.4 91.8 95.8 78.3 86.2 93.1 65.7 77.0
OVS 99.8 79.5 88.5 99.6 65.6 79.1 98.8 47.3 64.0
CTX+OVG+OVS 97.0 91.1 94.0 94.7 84.3 89.2 92.1 72.6 81.2
k-NN 94.9 92.8 93.8 91.6 87.9 89.7 87.0 83.1 85.0
NN 94.9 93.0 94.0 91.2 88.4 89.7 86.5 83.7 85.1
SVM 94.8 92.9 93.9 91.2 88.5 89.8 86.4 84.1 85.3

Table 2. Reconstruction results in % for rule-based approach ( rst
block) and data-driven approach (second block). Best results for
each row grouping are boldface.

In earlier experiments, results on this task were reported in
terms of word error rates between the hypothesized reconstruction
and a manual reference text. Word error rate, however, combines
wrongly hypothesized and missed words in one measure, making
it dif cult to optimize reconstruction rules. The retrieval power
is better expressed in terms of the information retrieval metrics
Recall = |COR|

|COR|+|MISS|
, Precision = |COR|

|COR|+|WRONG|
, and

their harmonic mean F1, where |COR| is the number of recon-
structed words with perfect correspondence in the reference text,
|MISS| is the number of words in the reference text without corre-
spondence in the reconstructed text, and |WRONG| is the number of
reconstructed words without correspondence in the reference text.
The obtained Recall/Precision/F1 scores for the systems described
in 3.3 and 3.4 are shown in table 2.

The rst block of table 2 are rule-based approaches. The rst
three systems (REC, WRI, PHO) are the same systems as used in
[1], so results are comparable. The CTX, OVG, and OVS systems
explore context and syllable overlap, and CTX+OVG+OVS is the
combination of these rules. The last block lists the data-driven sys-
tems k-NN, NN, and SVM in comparison to the rule-based systems.

Finally, we tested the impact of the similarity threshold value on
the nal system incorporating all rules. The threshold value can be
adjusted between t = 0.0 (no similarity) and 10.0 (identity) and was
varied from t = 5.0 to 10.0 in the experiments. The resulting curves
are plotted in a Recall/Precision diagram, shown in gure 1.
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Fig. 1. Recall/Precision diagram derived from the CTX+OVG+OVS
system by varying the phonetic similarity threshold t between t =
5.0 and t = 10.0 for high, medium, and low WER texts (c.f. table
2).

5. DISCUSSION & OUTLOOK

The recognized text (REC) is not a good starting point for recon-
structing a literal transcription. Although the recall scores are com-
parable with the other methods, many errors are taken over from the
recognition process, resulting in poor precision. The written text
(WRI) is more reliable for the domain of medical dictations. Pho-
netic similarity matching (PHO) further boosts the precision, as it
only selects those text parts with corresponding acoustic evidence.

Using context (CTX) in the phonetically controlled reconstruc-
tion improves the precision at the expense of the recall, as the F1
scores remain almost the same. Only for the high WER case, a small
gain of 0.5% absolute in the F1 scores can be observed. However,
this means that further rules have to be added to raise the recall.

The greedy exploration of overlap on syllable level (OVG) re-
turned surprisingly precise results which are absolutely comparable
to using contextual information. This applies even more to the selec-
tive overlap rule (OVS), which has only very little gain in recall in
comparison to the baseline, but almost maximum precision. These
ndings indicate that the combination of these rules could be bene -
cial. The combination of all rules shows the best performance for all
WER ranges. In comparison to the simple approach (PHO), there is
a gain in precision without loss of recall.

Finally, optimizing the threshold value for phonetic similarity
also contributes to the overall performance. The trade-off between
recall and precision is not linear, as the graphs in gure 1 show.
The best recall/precision value pairs were obtained for a similarity
threshold value t = 8.0, independent from the initial WER.

The data-driven systems are closer to the written text only (WRI)
reconstruction than the rule-based system, showing improvement in
precision for all WER ranges. The rather simple k-NN classi er con-
sistently produces the highest precision while the more complex NN
and SVM classi ers achieve higher recall scores. The rule-based
system outperforms the data-driven system only for low error rates.
Still, the main bene t of the data-driven approach is that no hand-
crafting of rules and no phonetic similarity threshold is required.

The impact of this text reconstruction method is currently being
tested for re-training of an ASR language model. For this appli-

cation, one would intuitively focus on high precision of the recon-
structed texts to accurately model the speci ties of spoken language.
The particular trade-off between precision and recall still has to be
studied to give recommendations for selecting the optimum operat-
ing point for the reconstruction system. Furthermore, transferring
the method to other domains, e.g. enhancing imprecise closed cap-
tions will also be an interesting future application.

6. CONCLUSION

We presented a sophisticated automatic transcription system for
medical dictations based on phonetic similarity matching and text
alignment on multiple levels of segmentation. For comparison, these
features are implemented in a rule-based and an automatic classi -
cation reconstruction system. We investigated the effect of syllab-
i cation in text alignment, context in text reconstruction, and the
phonetic similarity threshold on the performance of the system.

The usage of multiple reconstruction rules with high precision,
but lower recall like context- or syllable-based rules returned more
accurate results than the data-driven approach, except for high initial
word error rates. The combination of all the described techniques
improved the precision of the reconstructed literal transcription be-
tween 0.7% and 4.7% absolute in comparison to a simpler system,
also based on phonetic similarity matching.
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