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ABSTRACT 

Phoneme set clustering of accurate modeling is important in the task 
of multilingual speech recognition, especially when each of the 
available language training corpora is mismatched, such as is the 
case between a major language, like Mandarin, and a minor 
language, like Taiwanese. In this paper, we present a data-driven 
approach for not only acquiring a proper phoneme set but 
optimizing the acoustic modeling in this situation. In order to obtain 
the phoneme set that is suitable for the unbalanced corpus, we use an 
agglomerative hierarchical clustering with delta Bayesian 
information criteria. Then for training each of the acoustic models, 
we choose a parametric modeling technique, model complexity 
selection, to adjust the number of mixtures for optimizing the 
acoustic model between the new phoneme set and the available 
training data. The experimental results are very encouraging in that 
the proposed approach reduces relative syllable error rate by 7.8% 
over the best result of the knowledge-based approach. 
 

Index Terms—phoneme set clustering, delta-BIC, 
multilingual speech recognition 

1. INTRODUCTION 

Multi-lingual speech recognition is a popular research topic in the 
speech recognition field [1-5]. Most multi-lingual speech 
recognition depends on a large-scale speech database for each 
language in order to train the acoustic models well. However, such 
abundant speech corpora are not always available for all the 
languages under consideration. Some major languages, such as 
English, Mandarin, French, Deutsch, Japanese and Spanish, may 
have abundant speech corpora, which could be used in training 
reliable acoustic models. In contrast, certain minor languages, like 
Taiwanese, may not have much speech corpora available [6]. 
Collecting a well-designed, large-scale speech corpus for every 
language under consideration is not feasible, so the fundamental 
motivation of this paper is to find an approach which can adopt the 
speech corpora available for the major languages to help build 
reliable acoustic models for the minor languages. 

Several approaches which utilized a universal phoneme set for 
multilingual speech recognition have been proposed. One approach 
is to map a language-dependent phone set to a global inventory of 
the multilingual phonetic phone set based on phonetic knowledge to 
construct the multilingual phone inventory [1-4]. The advantage of 
this approach is that the same phonetic representation with different 
languages shares the training data. However, this type of approach is 

based only on the phonetic knowledge. It does not consider the 
spectral properties of the phone models. This may be the 
disadvantage. Another approach is to merge the language-dependent 
phones using a data-driven approach, such as a hierarchical phone 
clustering algorithm, according to some specific distance measure 
between acoustic models [7-9]. The advantage of this type of 
approach is that the distance is estimated from the statistical 
measure of similarity of real recognition models, which may be 
more appropriate. Nevertheless, most proposed approaches of this 
type do not consider optimizing the number of the phones in a phone 
set. They used several heuristic thresholds as the criteria to stop the 
merging or splitting process, and then chose the best one according 
to the local optimal performance obtained from several well trained 
acoustic models.  

In this paper, we use a data-driven approach to choose the best 
phoneme set so that the bi-lingual/multilingual speech recognition 
system can achieve optimal recognition accuracy. For the first phase 
of our approach, we use a statistical distance measure, 
Bhattacharyya distance [9], to map phonemes across languages 
according to well-trained acoustic models. Then we adopted a 2-step 
clustering, which used the agglomerative hierarchical clustering 
(HAC) [10] with delta Bayesian information criteri  [11] to 
guide phone clustering based on the distance measure mentioned 
above. Since the training speech data is unbalanced between the 
languages considered in this paper, Mandarin and Taiwanese, the 
goal of this step is to generate a data-driven rule set from the corpus 
with language independent (LI), context independent phoneme (CIP) 
units; we then use these rules to constrain the second step of LI 
context dependent phoneme (CDP) clustering. After the clustering, 
we generate the optimal phoneme set (OPS) which with the same 
unit will share the training data. Finally to optimize the OPS 
acoustic model, we used a model complexity selection (MCS) to 
adjust the number of mixtures for balance between the OPS and the 
available training data. 
 
2. SOME PHONETIC INFORMATION FOR - 
TAIWANESE AND MANDARIN  
 
For using a major language, like Mandarin, to assist a minor 
language, like Taiwanese, in acoustic modeling, basic knowledge 
about the phonetics, phonology and other linguistic aspects of the 
two languages are essential. Taiwanese (also called Min-nan in 
linguistic literatures) and Mandarin are two members of Sino-
Tibetan language family. They are monosyllabic languages and they 
share the same written system, the Chinese character. Taiwanese is a 
language member in the Chinese language family, but it is quite 

43011-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



unintelligible to people speaking only Mandarin. We examined 
some aspects of the linguistic properties to demonstrate how they 
are different with each other.  
In the phonemic level, there are 21 consonants and 9 vowels in 
Mandarin, while there are 16 consonants and 11 vowels in 
Taiwanese. Some of the phonemes in the two languages are labeled 
with the same symbols by phoneticians, meaning that they are 
phonetically very close. In our examination, only 18 phonemes are 
in common.  
In the syllabic level, although both languages have similar CVC (C: 
Consonant, V: Vowel) structure, Taiwanese has much more 
abundant variations in the syllable-ending consonants, including -p, 
-t, -k, -h, and so on. Totally, there are 408 CVC syllables in 
Mandarin, and 709 CVC syllables in Taiwanese. The numbers of the 
union set of the syllables in both languages are 924, and only 189 
syllables are in common. The information mentioned above is 
summarized in table 1. 
 

 M  T  TM  TM
Np 30 37 49 18
NS 408 709 924 189

Table 1. The statistic information of all Mandarin (M) and 
Taiwanese (T) linguistic units in two levels: the numbers of 
phoneme (Np), the numbers of syllables (NS), where and  
represent intersection and union of sets, respectively. 
 

3. OPTIMIZING ACOUSTIC MODELS 

We proposed a system, which is composed of 3 main steps to obtain 
an optimal set of bilingual acoustic models. The overall diagram is 
shown in figure 1. First of all, we trained a set of hidden Markov 
models (HMM) based on LD phoneme sets which include both CIPs, 
and CDPs. Then, the Bhattacharyya distance is used to evaluate a 
similarity of each phone model in the LD acoustic models. The 
Bhattacharyya distance is a theoretical distance measure between 
two Gaussian distributions. It is said to be equivalent to an upper 
bound on the optimal Bayesian classification error probability [9]. 
We could give a brief review here with the following equation and 
its notations. 
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where 
pqiD is the Bhattacharyya distance between pth and qth 

phonemes in ith state, piu is the mean vector of pth phoneme in ith 

state, and pi is the covariance matrix of the pth phoneme in ith 

state. 
The first term of the right side in equation (1) discriminates the 

class due to the difference between class means, while the second 
term discriminates the class due to the difference between class 
covariance matrices. 

In order to generate the optimal phoneme set (OPS) of the 
bilingual corpus, we employ two steps of clustering by using the 
HAC and to guide the direction of phone clustering based on a 
similarity matrix. The first step is to use the LI-CIP acoustic models 
to generate the data-driven rules as the phonetic constraints, and the 
second step is to generate the OPS from clustering the LI-CDPs. 
Each of the merged LI-CDP shares the available training data. After 
the models were merged via , the models could be probably 
over-merged or under-merged. Therefore, we next use model 
complexity selection to get a balance between the demands of 
resolution of acoustic models and the amount of available training 
data. In the following subsections, we will describe these three steps 
in more details. 

 

 
Figure 1. The overall diagram for automatically optimizing 
the acoustic models 

 
3.1. CIP Clustering 
Because the Taiwanese speech corpus is only half of that of the 
Mandarin, we used a data-driven approach to obtain the data-driven 
rules to replace the knowledge sources. These rules are in CIP level 
and we use them to constrain the CDP clustering. In order to obtain 
those rules, we adopt HAC and . 
    HAC is a bottom-up clustering method where the bottom nodes 
are the LD-CIP. We use the single-linkage agglomerative algorithm 
with Euclidean distance to construct the HAC tree from the 
similarity matrix. Then, we employ  as the confidence measure 
to cluster the “similar” CIP from the bottom nodes to the top nodes. 

Before we describe , we introduce Bayesian information 
criteria (BIC). BIC is an asymtotically optimal Bayesian model-
selection criterion used to decide which of m parametric models best 
represents n data samples d

tn Rxwherexx ,,...,1
. Each model 

iM  has 

a number of parameters 
ik . We assume that all the samples tx  are 

statistically independent. According to the BIC theory [12], for 
sufficiently large n, the best state of the data is the one which 
maximizes. 
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where ),...,( 1 ni xx  is the likelihood of the data under the model 
iM .  

is a constant value, and we used 1. 
  In our case, according to the HAC structure, we select the 

nearest two nodes for model merging: choose the model pM over 

qM  if ) as defined( qp BICBICBIC is positive. Based on 

equation (2), the formula of  is written as: 
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where qp nn ,  and rn are the number of occurrences of node p, q 

and r;  , qp
and r are the covariance of the model p, q and r 

respectively. The results of using to merge Mandarin and Taiwanese 
LD-CIPs are demonstrated in figure 2, where the squared CIPs, such 
as /ak_T/ and /ap_T/ (the 4th square from the right side), are merged. 
 
3.2. CDP Clustering 
We set the results of clustering CIPs as the rules to constrain the 
CDP clustering. We take the merging process for phonemes /*-
ak_T/ and /*-ap_T/ as an example, which is shown in figure 3. First 
of all, we generated a hierarchical tree whose bottom nodes include 
all CDPs containing /ak_T/ and /ap_T/ in their phonemic 
transcription by using HAC algorithm based on the similarity matrix. 
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Then we used to find the optimum CDP set. The merged CDPs share 
the available training data. If is negative, the merging process stops. 
 

 
Fig. 2. The results of using HAC and of Mandarin and Taiwanese 
LD-CIP. 
 

 
Fig. 3 The merging result of LD-CDP, /*-ak_T/ and /*-ap_T/. 
 
3.3. Model Complexity Selection (MCS) 
After we optimized the phoneme set by using the constraints of 
HAC and , we considered the balance between the resolution 
of the generated acoustic models and the amount of available 
training data. Each state of an acoustic model contains several 
Gaussian mixtures. According to [14], a parametric modeling 
technique, model complexity selection, is chosen to perform on each 
state with sufficient training data, and we select the number of 
mixtures based on the number of data frames belonging to the 
phoneme state in the acoustic model. Model complexity selection 
works as follows: whenever there is a change in the amount of data 
assigned to a model, the number of the available training samples 
that are assigned to the model is used to determine the new number 
of mixtures in the GMM using: 
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where j
piM  is the number of Gaussian mixtures of the pth acoustic 

model of the ith state at iteration j , and it is determined by the 
amount of the training data belonging to that model at that 

occurrence j
piN  divided by the jth iteration multiplying the 

occurrence ratio (OR) where OR is a constant value across all 
training process. 
 

4. EXPERIMENT 

4.1. Corpora 
The training corpus contained both Mandarin and Taiwanese speech, 
including 100 speakers in Mandarin and 50 speakers in Taiwanese. 
The total length of the training speech in Taiwanese was about half 
of that in Mandarin. Each of the speakers recorded two sets of 
phonetically balanced utterances, each of which contained one to 
four syllables. Another 20 speakers recorded the test data, and the 

total length was about 0.56 hours. The information of the corpus is 
listed in table 2. 
 

 language number of 
speakers 

number of 
utterances 

speech length 
(in hours) 

Mandarin 100 43,078 11.3Training
Set Taiwanese 50 23,009 5.6

Mandarin 10 1,000 0.28Test
Set Taiwanese 10 1,000 0.28

Table 2. Statistics of the training and testing bi-lingual speech 
corpus. 
 
    For the feature extraction, each frame of short-time speech 
waveform is represented by a feature vector consisting of 12 mel-
frequency cepstral coefficients (MFCCs), energy, their first order 
derivatives (delta coefficients) and second order derivatives (delta-
delta coefficients). For the acoustic modeling, HMM is used to train 
acoustic models, each of which has three states. For the language 
modeling, a uniform distribution is used, which implies the 
perplexity of the language model to be 924. In the configuration of 
the acoustic models, the numbers of LD-CDP and LI-CDP are 1503 
and 1242, respectively. A set of 19 rules from the first step of CIP 
clustering is applied, and then a set of 1083 phonemes is obtained 
from the second step of CIP clustering. 
    A series of the experiments to validate the proposed method were 
performed, and the acoustic models could be divided into two parts. 
In the first part, we used the knowledge-based approach. In this 
approach, the acoustic models represent phonemes of both LD-CD 
and LI-CD phone set, transcribed based on IPA. Each of the models 
could probably use MCS or not. Next, we use the test data to 
evaluate the trained acoustic models then can realize the baseline 
knowledge-based results and also analyze the influence of the MCS 
on the unbalanced corpus. 
    In the second part, in order to analyze the influence of the rules 
which have been generated from the unbalanced corpus by the data-
driven approach, we trained two acoustic models, CDP-MCS and 
OPS-MCS. The CDP-MCS only used HAC and once to generate a 
new CDP set. The latter OPS-MCS uses the 2-step clustering of 
HAC and  to generate a new phoneme set which is also the 
main proposed method in this paper. 
    In addition, we compared our approach with the decision tree-
based tri-phoneme clustering method with MCS (DT-MCS). In that 
method, the tri-phoneme nodes are placed in the root of the decision 
tree, and each node of the tree is associated with a binary question 
which has been selected from a set derived by linguistic experts. The 
best question is assigned to a node if it results in a binary splitting 
with minimal loss of likelihood [13]. We use the MCS for all of the 
acoustic models throughout all of the second part experiment, and 
the experiment diagram is shown in figure 4. 
 

 
Fig. 4. The experiment diagram. 

4303



4.2. Baseline Results 
The experimental results of the first part are illustrated in table 3. 
The best performance in terms of syllable accuracy of both the 
baseline LI and LD are 60.1% and 59.8%, respectively. On the other 
hand, using the MCS described in step 3 of the third section, we get 
the best results of LI and LD to be 61.7% and 60.9%. These results 
mean that balancing the demands of resolution in acoustic models 
and the amount of available training data will achieve a higher 
accuracy rate. 

GMM-8 GMM-16 GMM-32 GMM-64
LD-MCS 57.7% 60.9% 59.7% 59.1%
LI-MCS 59.5% 61.7% 61.3% 61%
LD 56.3% 59.8% 57.2% 56.6%
LI 58.4% 60.1% 59.5% 58.6%

Table. 3. The syllable accuracy rates of LI and LD with and without 
MCS in different maximum number mixtures per state. 
 
4.3. OPS Results 
In this part, we compare the performance of several other models of 
acoustic training with our proposed approach, and the results are 
shown in table 4. In this chart, it is clear that increasing the 
maximum number of mixture per state, only our approach, improves 
the syllable accuracy rate, and the best result we achieve in this 
paper is 64.7%. On the other hand, CDP-MCS which does not use 
the data-driven rules from the corpus, the performance is even lower 
than the baseline performance when the maximal numbers of the 
mixtures are below 16. This result means the second step of CDP 
clustering alone is neither adequate to model the data well nor 
generate the phoneme set that is suitable for such the unbalanced 
corpus. Therefore, we should use some of the data-driven 
approaches as the phonetic rules to constrain the clustering of CDP. 
After we use the knowledge sources embedded during the phoneme 
clustering, such as DC-MCS, the performance is better than that of 
CDP-MCS. However, the knowledge sources of DT-MCS does not 
concern with the unbalanced conditions in this corpus. Thus, the 
proposed OPS-MCS which uses the data-driven approach to 
generate the data-driven rules for concerning the conditions of the 
unbalanced training data achieves higher accuracy rates than DT-
MCS.   

To analyze the mixtures of the acoustic model, we can see the 
best results of the baseline when the maximum number of mixtures 
per state is 16. Then if we increase the number of the mixtures in a 
state, the performance drops. Nevertheless, we used a 2-step 
clustering of the HAC and in OPS-MCS, as the accuracy rate curve 
rises as we increase the maximum number of mixture per state. That 
also verifies our proposed method is a balanced approach between 
the choosing the suitable phonetic units and optimizing the acoustic 
model under an unbalanced bi-lingual corpus. 
 

5. CONCLUSION 
 
In this paper, we have demonstrated that a 2-step clustering 
approach with agglomerative hierarchical clustering and delta 
Bayesian information criteria is a useful data-driven method to 
generate data-driven rules to constrain the CDP clustering in an 
unbalanced bi-lingual corpus. It has been shown that the rules 
provide sufficient information from the unbalanced conditions of the 
training corpus. When a bi-lingual corpus is unbalanced, we would 
put more emphasis on the characteristics of the corpus identity, and 
the rules driven from the data could reflect the properties of the 
corpus completely. We also employ a model complexity selection to 
balance between the OPS and the available training data. The use of 
these steps reduces relative syllable error rate by 7.8% comparing 
with the best result of the knowledge-based method. 

 
GMM-8 GMM-16 GMM-32 GMM-64

DT-MCS 59.3% 60.4% 62.7% 62.8%
OPS-MCS 59.9% 63.1% 64.4% 64.7%
CDP-MCS 58.2% 59.5% 61.3% 61.1%
Table. 4. The syllable accuracy rates of DT, CDP and OPS with 
MCS in different maximum number mixtures per state. 
 

6. REFERENCES 
 
[1] T. Schultz and A. Waibel, "Multilingual Cross-lingual 
Speech Recognition," in Proc. of the DARPA Broadcast 
News Transcription and Understanding Workshop, 1998. 
[2] Tanja Schultz and Katrin Kirchhoff, "Multilingual Speech 
Processing" Elsevier, Academic Press, ISBN 13: 978-0-12-088501-5. 
April 2006. 
[3] Ulla Uebler, "Multilingual Speech Recognition in Seven 
Languages," Speech Communication (35), 2001, pp. 53-69. 
[4] Joachim Kohler, "Multilingual Phone Model for Vocabulary-
Independent Speech Recognition Task," Speech Communication 
(35), 2001, pp. 21-30. 
[5] C. Santhosh Kumar, V.P.Mohandas, Li Haizhou, "Multilingual 
Speech Recognition- A Unified Approach," in Proc. of EuroSpeech 
2005. 
[6] Dau-Cheng Lyu, Bo-Hou Yang, Min-Siong Liang, Ren-Yuan 
Lyu and Chun-Nan Hsu, "Speaker Independent Acoustic Modeling 
for Large Vocabulary Bi-lingual Taiwanese/Mandarin Continuous 
Speech Recognition," in Proc. of SST 2002. 
[7] Chung-Hsien Wu, Yu-Hsien Chiu, Chi-Jiun Shia, and Chun-Yu 
Lin, "Phone Set Generation Based On Acoustic and Contextual," in 
Proc. of  ICASSP 2006 
[8] Liu Yi and Pascale Fung, "Automatic Phone Set Extension with 
Confidence Measure for Spontaneous Speech," in Proc. of 
EuroSpeech 2005. 
[9] Brian Mak and Etienne Barnard, "Phone Clustering Using the 
Bhattacharyya Distance," in Proc. of ICSLP 1996, pp. 2005-2008. 
[10] E. B. Fowlkes and C. L. Mallows, "A Method for Comparing 
Two Hierarchical Clusterings," Journal of the American Statistical 
Association 78 (383), 1983, pp:553-584. 
[11] A. Tritschler and R. Gopinath, "Improved Speaker 
Segmentation And Segments Clustering Using The Bayesian 
Information Criterion," in Proc. EuroSpeech 1999, pp. 679-682. 
[12] G. Schwarz, "Estimating the dimension of a model," The annals 
of statistics, vol. 6, 1978, pp 461-464 
[13] Young, S. J., Odell, J. J., and Woodland, P. C., "Treebased state 
tying for high accuracy acoustic modelling," In Proc. of the ARPA 
Workshop on Human Language Technology, 1994 
[14] X. Anguera, T. Shinozaki, C. Wooters, and J. Hernando, 
"Model Complexity Selection and Cross-validation EM Training for 
Robust Speaker Diarization," in Proc. of ICASSP 2007 

4304


