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ABSTRACT

This paper shows how to improve Hidden Conditional Random

Fields (HCRFs) for phone classification by applying various speaker

adaptation techniques. These include Maximum A Posteriori (MAP)

adaptation as well as a new technique we introduce called Maximum

Conditional Likelihood Linear Regression (MCLLR), a discrimina-

tive variant of the widely used MLLR algorithm. In previous work,

we and others have shown that HCRFs outperform even discrimina-

tively trained HMMs. In this paper we show that HCRFs adapted

via MCLLR or via MAP adaptation also work better than similarly

adapted HMMs. We also compare MCLLR and MAP adaptation

performance with different amounts of adaptation data. MCLLR

adaptation performs better when the amount of adaptation data is

relatively small, while MAP adaptation outperforms MCLLR with

larger amounts of adaptation.

Index Terms— Hidden Conditional Random Field, Speaker

Adaptation, Maximum a Posteriori, Maximum Conditional Likeli-

hood Linear Regression

1. INTRODUCTION

The Conditional Random Field (CRF) [1] is a widely used

sequence labeling model that has attractive attributes as a re-

placement for the widely used Hidden Markov Model (HMM).

CRFs don’t have strong independence assumptions and have

the potential to incorporate a rich set of overlapping and non-

independent features. Moreover, CRFs are trained discrim-

inatively, i.e. by maximizing the conditional probability of

label given the observations.

Recently, there has been increasing interest in CRFs with

hidden variables, i.e. Hidden Conditional Random Fields
(HCRFs), introduced below in section 2. Like CRFs, HCRFs

are undirected sequence models that incorporate a rich set of

features and intrinsic discriminative training, and have proved

successful in tasks like string edit distance (McCallum et. al.

[2]), gesture recognition (Quattoni et. al. [3]), and phone

classification (Gunawardana et al. [4], Sung et al. [5]).

In this paper, we explore techniques for improving HCRF

phone classification via speaker adaptation. The first method

is Maximum Conditional Likelihood Linear Regression

(MCLLR), a discriminative variant of the widely used Maxi-

mum Likelihood Linear Regression (MLLR) method for HMM

speaker adaptation [6, 7]. MCLLR resembles MLLR in learn-

ing a linear transform to modify the acoustic model parame-

ters, but resembles the discriminative HMM adaptation method

of [8] in maximizing the conditional likelihood, hence being a

discriminative training method; see section 3 for details. The

second method is Maximum a Posterior (MAP) adaptation

which was successfully applied to HMM speaker adaptation

by Gauvain and Lee [9], as well as to other models like Maxi-

mum Entropy Markov Models (MEMMs) [10], and which we

applied to HCRF adaptation in [5].

Unadapted HCRFs have previously been showed to out-

perform HMMs [4]. We compare adapted HCRFs with adapted

HMMs by both MAP and linear regression adaptation meth-

ods to see if HCRFs can still work better than HMMs after

adaptation. We also compare the performance of MCLLR and

MAP adaption for HCRFs with different amounts of adapta-

tion data.

2. HIDDEN CONDITIONAL RANDOM FIELDS

An HCRF is a markov random field conditioned on desig-

nated evidence variables in which some of the variables are

unobserved during training. The kind of linear chain struc-

tured HCRF that we use for speech recognition is simply a

conditional distribution p(y|X) with a sequential structure,

as figure 1 shows. Assume that we are given a sequence of

observations X and we want to give a corresponding label y;

HCRFs model the conditional distribution function as:

p(y|X; λ) =
1

Z(X; λ)

X

H

exp {λT F (y, H, X)} (1)

where H is the sequence of hidden variables. F is the fea-

ture vector which is a function of the label y, the hidden vari-

able sequence H , and the input observation sequence X . λ
is the parameter vector whose kth element is the parameter

corresponding to the kth element in the feature vector F . The

constant Z is called the partition function and is defined as:

Z(X; λ) =
X

y′

X

H

exp {λT F (y′, H, X)} (2)
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Fig. 1: Hidden Conditional Random Fields

which is used to make sure the conditional distribution summed

over all possible labels be one. Due to having to sum over all

possible instances of y and H , the partition function is the

main source of computation in learning.

The elements in the feature vector are the same as those

mentioned in [4]. They include phone unigram features, state

transition features, component occurrence features, first mo-

ment features, and second moment features as follow,

f
(LM)

y′ = δ(y = y′) ∀y′

f
(Tr)

y′ss′ =
X

t

δ(y = y′, st−1 = s, st = s′) ∀y′, s, s′

f (Occ)
s,m =

X

t

δ(st = s, mt = m) ∀s, m

f (M1)
s,m =

X

t

δ(st = s, mt = m)xt ∀s, m

f (M2)
s,m =

X

t

δ(st = s, mt = m)x2
t ∀s, m

We train HMMs for each phone as initial models for HCRF

learning because the conditional log-likelihood is not concave

and good initialization is important for finding a better opti-

mum. In order to reduce overfitting, we add a Gaussian prior

with the origin as center for regularization [5]. The regular-

ization term gives the learning process prior knowledge about

the parameters and the σ in the Gaussian prior is used to de-

cide the degree of regularization. We used σ = 10 throughout

the experiments in this paper. After taking the logarithm and

adding the regularization term, we can reformulate equation

(1) as:

log p(y|X; λ) = log
X

H

exp {λT F (y, H, X)}

− log
X

y′

X

H

exp {λT F (y′, H, X)} − λT λ

2σ2
(3)

We apply Stochastic Gradient Descent (SGD) as the opti-

mization technique to optimize the conditional log-likelihood,

equation (3), because computing the gradient over all the train-

ing data is tremendously expensive.

3. MAXIMUM CONDITIONAL LIKELIHOOD
LINEAR REGRESSION

We introduce here a new method called Maximum Condi-

tional Likelihood Linear Regression, similar to the MLLR

[6] method used in HMM adaptation. MCLLR assumes the

adapted parameters are a linear combination of the original

parameters and describes the adaptation in matrix form. Un-

like MLLR, MCLLR maximizes the conditional likelihood

and is a discriminative training method, which improves the

correct model and degrades the competitive models at the

same time.

We reconstruct the parameter vector as ν = [1, λ1, ..., λn],
where λ1, ..., λn are the original parameters and n is the num-

ber of adapted parameters. The constant is added into the pa-

rameter vector as an offset. After that, we can describe the

adapted parameter λ′ as the linear combination of the original

parameters by λ′ = Mν, where M is a n by n + 1 transfor-

mation matrix. The learning process is to find the best M by

maximizing conditional probability on the adaptation data.

The conditional probability can be further described as

equation (4).

p(y|X; λ′) =
1

Z(X; λ′)

X

H

exp {λ′T F (y, H, X)}

=
1

Z(X; Mν)

X

H

exp {νT MT F (y, H, X)} (4)

Instead of maximizing the conditional likelihood, we take

the logarithm and add the regularization term to derive equa-

tion (5) from equation (4). The first two terms come from the

original likelihood and the last term is a regularization term.

The regularization is applied to reduce overfitting and is the

same as the one mentioned in HCRF learning in section 2.

log p(y|X; M) = log
X

H

exp {νT MT F (y, H, X)}

− log
X

y′

X

H

exp {νT MT F (y′, H, X)}

− νT MT Mν

2σ2
(5)

Equation (5) is maximized by Limited-memory BFGS,

which is a kind of quasi-newton method [11]. The first rea-

son to use Limited-memory BFGS instead of the SGD which

we had used in HCRF learning is that the amount of adapta-

tion data is generally small. As a result, it is fast to calculate

the gradient over all data and finish one iteration in Limited-

memory BFGS. The second reason is that it is not easy to find

a good step size for SGD, while Limited-memory BFGS uses

line search to decide the best step size in each iteration.

The gradient of conditional log-likelihood with respect to

M can be derived as equation (6) and (7). Without consider-

ing the regularization term, when we reach the optimal point,

the expectation of FνT by the distribution of hidden variables

given label and observation variables equals the expectation

of FνT by the distribution of label and hidden variables given

observation variables, which is similar to the derivation for

HCRF learning in [5].
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∂ log p(y|X; M)

∂M
=

X

H

FνT p(H|y, X)

−
X

y′

X

H

FνT p(y′, H|X) − MννT

σ2
(6)

= EH|y,X [FνT ] − Ey′,H|X [FνT ] − MννT

σ2
(7)

In this study, we only adapt the first moment parameters

and keep the remaining parameters fixed, which corresponds

to adapting the mean of the Gaussian distribution in HMMs.

Because we only adapt the first moment parameters and share

the transformation over all phones, the total number of free

parameters for MCLLR adaptation is much smaller than that

for MAP adaptation.

4. MAXIMUM A POSTERIORI ADAPTATION

To explore MAP adaptation for HCRF speaker adaptation, we

reformulate equation (3) as:

log p(y|X; λ) = log
X

H

exp {λT F (y, H, X)}

− log
X

y′

X

H

exp {λT F (y′, H, X)}

− (λ − λo)
T (λ − λo)

2σ2
(8)

Equation (3) and (8) differ only in the regularization term.

In general HCRF training, we use the origin as the center of

the Gaussian prior. In MAP adaptation, we replace the ori-

gin by the parameters of the speaker independent model, i.e.

λo. Because the speaker independent models give us a good

idea about what any acoustic model should look like, the last

term is used as our general prior on models. The first and

second terms are just the conditional log-likelihood given the

adaptation data. We learn the new parameters by optimizing

equation (8) which simultaneously considers both the speaker

independent models and the new information from the adap-

tation data.

For reasons mentioned in section 3, limited-memory BFGS

is used as the optimization technique to maximize conditional

log-likelihood. The gradient of conditional log-likelihood with

respect to λ can be derived further as:

∂ log p(y|X; λ)

∂λ
=

X

H

F (y, H, X)p(H|y, X)

−
X

y′

X

H

F (y′, H, X)p(y′, H|X) − λ − λo

σ2
(9)

= EH|y,X [F (y, H, X)] − Ey′,H|X [F (y′, H, X)] − λ − λo

σ2

(10)

Speakers s17 s20 s21 s22 s24

Adaptation 296 253 471 430 356

Test 336 182 329 1015 323

Speakers s25 s26 s32 s33 s34

Adaptation 316 324 436 282 271

Test 680 346 309 281 451

Table 1: Numbers of utterances of adaptation and test data for each

speaker.

5. THE BUCKEYE SPEECH CORPUS

The corpus we used for phone classification is the Buckeye

Speech Corpus [12], which is a wide-band conversational speech

corpus recorded in Ohio State University. The corpus con-

tains 20 speakers conversing freely with an interviewer in

Columbus, Ohio. The speech was orthographically transcribed

and phonetically labeled by hand.

We choose the first 10 speakers (5 males and 5 females)

for training speaker independent HMMs and HCRFs. We then

use the remaining 10 speakers (5 males and 5 females) for

adaptation and testing. For each testing speaker, we preserve

2 – 3 interviews for adaptation and use the remaining inter-

views for testing. The numbers of utterances of adaptation

and test data for each speaker are shown in table 1 with av-

erages 343.5 and 425.2, respectively. The average number of

phones per utterance is around 27.03.

6. EXPERIMENT RESULTS

6.1. Comparison between HMM and HCRF adaptation

In the first experiment, we compare MAP and linear regres-

sion (MLLR and MCLLR) adaptation for HMMs and HCRFs.

Table 2 shows the adaptation results for all adaptation data

which has more than 250 utterances for each speaker. In the

table, mix01 – mix08 stand for the number of components in

both HMMs and HCRFs.

In the speaker-independent case, HCRFs work better than

HMMs for all numbers of components by 8% – 15%. After

MAP and linear regression adaptation, HCRFs still outper-

form HMMs with similar differences. For HCRF adaptation,

we have a large amount of adaptation data, so MAP adapta-

tion works better than MCLLR adaptation by 4% – 5%. This

is because in MCLLR we only adapt the first moment param-

eters and assume the adapted parameters are just linear trans-

formation of original parameters in MCLLR which constrains

the freedom of adaptation. As a result, it performs worse than

MAP adaptation with large amounts of adaptation data.

6.2. Comparison between MAP and MCLLR adaptation

In the second experiment, we explore how the amount of

adaptation data influences the adaptation results for both MAP

and MCLLR adaptation. In figure 2, the x-axis is the number

of utterances in the adaptation data, from no adaptation data
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HMM mix01 mix02 mix04 mix08

Spkr-indep 64.95% 58.23% 55.41% 53.29%

MLLR 59.03% 52.86% 50.82% 49.29%

MAP 52.28% 48.47% 46.23% 44.51%

HCRF mix01 mix02 mix04 mix08

Spkr-indep 49.73% 47.32% 46.25% 45.45%

MCLLR 44.02% 41.67% 41.37% 40.16%

MAP 39.13% 37.58% 36.82% 36.60%

Table 2: Phone Classification Errors for HMM and HCRF Adapta-

tion with all adaptation data.
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Fig. 2: Comparison between MAP and MCLLR adaptation

to 250 utterances for each speaker. The y-axis is the phone

classification error rate. As the number of utterances in adap-

tation data increases, both MAP and MCLLR adaptation im-

prove over speaker-independent models.

When the speaker-independent models are adapted by less

than 100 utterances, MCLLR adaptation clearly works better

than MAP adaptation. That is because the freedom for adap-

tation in MCLLR is much smaller than in MAP adaptation.

As a result, MAP can not adjust the models too well when we

don’t have enough adaptation data. On the other hand, when

the number of utterances is increased further, the advantage of

the greater amount of freedom in MAP parameters becomes

dominant. Therefore, the performance of MAP adaptation is

better than that of MCLLR. The results are very similar to

HMMs with MAP and MLLR adaptation in [13].

7. CONCLUSION

In this paper, we explore speaker adaptation for HCRF phone

classification using two different approaches, Maximum a Pos-

teriori adaptation, and a new discriminative method, Max-

imum Conditional Likelihood Linear Regression. Previous

research found that unadapted HCRFs outperform even dis-

criminatively trained HMMs. We find that the speaker-adaptive

HCRFs still outperform the speaker-adaptive HMMs whether

using MAP or linear regression methods. We also found that

the performance of MAP and MCLLR HCRF adaptation with

different amounts of adaptation data resembles the perfor-

mance of MAP versus MLLR HMM adaptation. When the

amount of adaptation is relatively small, we get better adap-

tation performance in MCLLR adaptation. When we have

relatively large amount of adaptation data, MAP adaptation

outperforms MCLLR adaptation.
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