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ABSTRACT

Incremental adaptation techniques for speech recognition are aimed
at adjusting acoustic models quickly and stably to time-variant acous-
tic characteristics due to temporal changes of speaker, speaking style,
noise source, etc. Recently we proposed a novel incremental adap-
tation framework based on a macroscopic time evolution system,
which models the time-variant characteristics by successively up-
dating posterior distributions of acoustic model parameters. In this
paper, we provide a unified interpretation of the proposal and the
two major conventional approaches of indirect adaptation via trans-
formation parameters (e.g. Maximum Likelihood Linear Regression
(MLLR)) and direct adaptation of classifier parameters (e.g. Max-
imum A Posteriori (MAP)). We reveal analytically and experimen-
tally that the proposed incremental adaptation involves both the con-
ventional and their combinatorial approaches, and simultaneously
possesses their quick and stable adaptation characteristics.

Index Terms— speech recognition, acoustic model, incremental
adaptation, macroscopic time evolution, indirect/direct adaptation

1. INTRODUCTION

In real environments, there inevitably exist time-variant and time-
invariant mismatches between the acoustic characteristics of train-
ing and unseen data that depend on the speaker, speaking style, and
noise varieties and their temporal changes. Acoustic model adapta-
tion techniques aim to compensate for such mismatches in a batch
or incremental manner, and are roughly classified into two standard
approaches, i.e., indirect and direct adaptation [1].

The indirect adaptation approach, as typified byMaximum Like-
lihood Linear Regression (MLLR) adaptation, does not estimate the
target model directly, but estimates mapping or transformation from
the initial to target models indirectly [2–4]. Model parameters are
usually grouped into classes in advance, and we estimate a set of
transformation parameters for each class, so that a reasonable amount
of data is available for estimating each transformation. The direct
adaptation approach, as typified by Maximum A Posteriori (MAP)
adaptation, directly estimates individual parameters in the target model,
taking account of both data and prior distributions [5–8]. An advan-
tage of indirect adaptation over direct adaptation is the quick effect
of adaptation for a small amount of data. This is because there are
fewer free parameters to be estimated owing to the use of parameter
classes where model parameters in the same class are commonly
transformed. On the other hand, an advantage of direct adapta-
tion over indirect adaptation is its stable property, where the perfor-
mance of an adapted model steadily approaches that of a condition-
dependent model based on the Bayesian theory. However, there are
unavoidable estimation errors in both indirect and direct adaptation
approaches for a refinement that only uses a small amount of data.
Therefore, especially in the incremental adaptation case, the both
approaches may also propagate the errors, and this affects the adap-
tation performance.

In [9], we focused on the influence of the propagation of the
estimation errors appeared in incremental adaptation, and proposed
a novel incremental adaptation framework based on a macroscopic
time evolution system. In the proposed framework, the dynamics
of acoustic model parameters are tracked by incremental update of
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Fig. 1. Correlation diagram of each adaptation method.

posterior distributions. The use of the posterior distributions can
well mitigate the error propagation. The proposed algorithm of our
incremental update involves a prediction and correction step in ac-
cordance with the Kalman filter theory [10], and this achieves the
quickness and stability in adaptation, which have been in trade-off
relationship in the conventional indirect/direct approaches.

In this paper, we further investigate the mechanism of the pro-
posed adaptation algorithm to provide the quickness and stability,
analytically and experimentally. Firstly, we provide a unified inter-
pretation of adaptation techniques, which involves the conventional
indirect/direct approaches, based on the macroscopic time evolu-
tion system. We also prove that the above interpretation can be ex-
tended so as to involve cascade combinations of indirect and direct
approaches (Bias-MAP, MLLR-MAP [11, 12]). Figure 1 shows the
relationship of the proposed and conventional adaptation methods
based on the obtained interpretation. Finally, we verify the appropri-
ateness of our interpretation by examining the quickness and stabil-
ity of these adaptation methods in unsupervised incremental adapta-
tion experiments.

2. MACROSCOPIC TIME EVOLUTION SYSTEM

This section briefly introduces an incremental adaptation framework
based on a macroscopic time evolution system [9]. In the macro-
scopic time evolution system, we assume that acoustic features are
changed based on a chunk unit, which consists of several utterances.
Then, the accumulated feature vectors (Ot), which is a frame-based
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sequence, can be regarded as a chunk-based sequence:

Ot = {o1, ..., on1| {z }
O1

, on1+1, ..., on1+n2| {z }
O2

, ..., ont−1+1, ..., ont−1+nt| {z }
Ot

}.

Here, on ∈ RD denotes a D dimensional feature vector at frame
n (ex. 10 ms), while Ot denotes a set of feature vectors at chunk t
(ex. 16 utterances). Then, posterior distributions of acoustic model
parameters, such as the mean vectors (—) of Gaussians in continuous
density HMMs, are incrementally updated on this macroscopic time
scale. Here, we target an arbitrary Gaussian mean vector parameter
in an acoustic model, and omit the Gaussian index from the param-
eter. By using the Markov assumption and probabilistic formulae,
we analytically derive a time evolution equation from p(—t|Ot) to
p(—t+1|Ot+1) [9] as:

p(—t+1|Ot+1) ∝ p(Ot+1|—t+1)| {z }
(A)

Z
p(—t+1|—t)| {z }

(B)

p(—t|Ot)| {z }
(C)

d—t.

(1)

The right hand side of time evolution equation (1) consists of three
distributions.
(A) p(Ot+1|—t+1) is the output distribution.

(B) p(—t+1|—t) is the discrete stochastic process of —t.

(C) p(—t|Ot) is the current posterior distribution, which is al-
ready estimated in the current adaptation step t.

In [9], we provide concrete Gaussian forms with these three distri-
butions.
(A) Output distribution⇐ Continuous density HMM 1

p(Ot+1|—t+1) =
Y

n|on∈Ot+1

`N (on|—t+1, Σ)
´ζn ,

(2)
where Σ is the covariance matrix of a targeted Gaussian, and
ζn is the occupation probability assigned to the targeted Gaus-
sian at frame n, which is obtained by the E-step of the EM
algorithm.

(B) Discrete stochastic process⇐ Linear dynamical system

p(—t+1|—t) = N (—t+1|At+1—t + bt+1, U), (3)

where At+1 and bt+1 are affine transformation parameters,
which are shared by several Gaussians, and can be estimated
by the standard MLLR algorithm by using Ot+1 [3, 4]. U is
the covariance matrix of the system noise, and is assumed to
be proportional to Σ as U , (u0)

−1Σ, where u0 is a tuning
parameter.

(C) Current posterior distribution⇐ Conjugate distribution

p(—t|Ot) = N (—t|—̂t, Q̂t), (4)

where we adopt a conjugate distribution of —t [5], i.e. —t is
distributed by a Gaussian of —̂t and Q̂t.

Then, the succeeding posterior distribution can be derived analyti-
cally by substituting the above three Gaussians (Eqs. (2), (3), and
(4)) into Eq. (1). The resultant posterior also becomes a Gaussian
distribution:

p(—t+1|Ot+1) = N (—t+1|—̂t+1, Q̂t+1),

1We consider the auxiliary function form instead of the output distribution
in continuous density HMMs owing to the existence of latent variables, and
omit state transition and mixture weight parameters.

where

Q̂t+1 , (((u0)
−1Σ + At+1Q̂tA

′
t+1)

−1 + ζt+1(Σ)−1)−1

—̂t+1 , At+1—̂t + bt+1| {z }
Prediction

+ K̂t+1| {z }
Kalman gain

„
mt+1

ζt+1
− At+1—̂t − bt+1

«
| {z }

Innovation

.

(5)

Here ′ denotes the transpose operation of the matrix. K̂t+1 is a
Kalman gain defined as K̂t+1 , Q̂t+1ζt+1(Σ)−1. ζt+1 is the accu-
mulated occupation count and mt+1 is the accumulated first-order
statistics, both of which are assigned to a targeted Gaussian at chunk
t + 1, i.e., (

ζt+1 , P
n|on∈Ot+1

ζn

mt+1 , P
n|on∈Ot+1

ζnon
.

Thus, we can update the posterior distribution given the succeeding
speech chunkOt+1.

In [9], we provide the solution (Eq. (5)) with the Kalman filter
interpretation. The first two terms on the right hand side of —̂t+1

in Eq. (5) are known as the “prediction term” with respect to the
Kalman filtering, which has a quick adaptation property. However,
the prediction often contains errors because the parameters are esti-
mated using only a limited amount of data. The errors might prop-
agate expansively in the process of successive updating, and this
causes the incremental adaptation to lose stability. To avoid this
problem, the prediction result is corrected with an innovator, which
is obtained as the expectation vector of the observation (mt+1/ζt+1)
minus the prediction vector. The Kalman gain K̂t+1 controls the
degree of correction. This scheme forms the core of “predictor-
corrector algorithm,” which is known as the most powerful advan-
tage of Kalman filtering as regards incremental adaptation issues
[10], which often employ a frame-by-frame type formulation. Since
the proposed adaptation employs a chunk-by-chunk type formula-
tion, and is driven by chunk statistics ζt+1, andmt+1, we call it in-
cremental adaptation based on a macroscopic time evolution system.
Thus, our framework includes the predictor-corrector algorithm ex-
plicitly, and therefore we can expect a quick and stable incremental
adaptation for speech recognition.

3. UNIFIED INTERPRETATION OF PROPOSED AND
CONVENTIONAL APPROACHES

This section theoretically discusses the relationships among proposed
framework and conventional adaptation approaches, and provides a
unified interpretation of them. In particular, we show, by consider-
ing the limit of three Gaussian distributions (Eqs. (2), (3), and (4))
in Eq. (1), that Eq. (5) can be simplified so as to be equivalent to
each of the conventional approaches.

3.1. Connection to indirect/direct adaptation

An indirect adaptation approach can be derived by disregarding the
effect from the output distribution in the proposal. Namely, we con-
sider a limit of p(Ot+1|—t+1) as its variance approaches infinity

2:

p(Ot+1|—t+1) :Y
n|on∈Ot+1

`N (on|—t+1, Σ)
´ζn → Uniform distribution. (6)

At this limit, the estimation of — becomes independent of the output
distribution. By applying the replacement expressed in Eq. (6) to
Eq. (2), and by solving Eq. (1), we obtain a simplified solution for
—̂t+1 instead of Eq. (5) as follows:

—̂t+1 → At+1—̂t + bt+1. (7)
2To make the output distribution non-informative, we virtually assumed a

multivariate uniform distribution on infinite ranges. The effect of the uniform
distribution is absorbed into a normalization factor in the calculation.
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This is equivalent to a type of indirect adaptation, the MLLR trans-
formation of the mean vectors [3, 4].

Also, a direct adaptation approach can be derived by discarding
the effect from the discrete stochastic process of model parameters in
the proposal. We now consider a limit of p(—t+1|—t) as its variance
approaches zero:

p(—t+1|—t) : N (—t+1|At+1—t + bt+1, U) → δ(—t+1 −—t), (8)

where δ(—t+1−—t) is a Dirac δ function. At this limit, the stochastic
process of model parameters does not work at all. By solving Eq.
(1) with Eq. (8) instead of Eq. (3), we obtain another simplified the
solution for —̂t+1 as follows:

—̂t+1 → u0—̂t + mt+1

u0 + ζt+1
. (9)

This is equivalent to a type of direct adaptation, the MAP adaptation
of the mean vectors [5]. Note that the role of system noise param-
eter u0 in the proposal is the same as that of the hyper-parameter
used in the MAP adaptation, which controls the balance between the
statistics from data and prior knowledge．

These two relationships (Eqs. (7) and (9)) prove the fact that the
macroscopic time evolution system theoretically involves conven-
tional indirect and direct adaptation approaches. Accordingly, it is
reasonable that the proposal can possess both quickness and stability
when it does not discard either effect from the output distribution or
discrete stochastic process (Eq. (5)).

3.2. Connection to combinatorial adaptation

An alternative method that can involve indirect and direct adaptation
approaches is a cascade type combination of the two approaches,
i.e., first estimating the transformation parameters, and then apply-
ing the Bayesian adaptation for the transformed model parameters
(Bias-MAP, MLLR-MAP) [11,12]. Our discussion now moves on to
the relationship between our framework and the combinatorial adap-
tation methods. We consider a limit of mean posterior distribution
p(—t|Ot) as its variance approaches zero:

p(—t|Ot) : N (—t|—̂t, Q̂t) → δ(—t − —̂t), (10)

In other words, we here point-estimate —. By applying the replace-
ment expressed in Eq. (10) to Eq. (4), and by solving Eq. (1), we
obtain

—̂t+1 → u0(At+1—̂t + bt+1) + mt+1

u0 + ζt+1
. (11)

The solution thus becomes equivalent to the combinatorial methods
[11, 12]. Note that the difference between our approach (Eq. (5))
and the combinatorial methods is whether or not covariance matrix
Q̂t is considered. Because of this effect of the covariance matrix,
our approach is expected to be more robust than the combinatorial
methods.

Throughout the above discussions, it has been proved that our
framework provides a unified view of the conventional indirect, di-
rect, and their combinatorial adaptation methods. It stands to reason
that the advantages of conventional methods (quickness and stabil-
ity) are inherited to and robustly enhanced in our framework. Figure
1 depicts a correlation of adaptation methods that have been dis-
cussed in this section. The Kalman filter based speech recognition,
which is not in the context of this discussion, is also included in the
figure, We have already discussed the relationship between this and
our framework in [9].

4. EXPERIMENTS
We conducted a series of experiments for verifying whether the re-
lationship that we discussed in the previous section was properly
reflected in adaptation performance. Figure 2 shows design of unsu-
pervised incremental adaptation experiments. Here, it was assumed

1st chunk

(16 utterances)

2nd chunk

(16 utterances)

��..

16th chunk

(16 utterances)

1 lecture

(16x16 = 256 utterances)

Read speech

203 males

50.2 hours

Initial acoustic model

Decoding

Decoding

Transcription

Recognition

result

Decoding

Decoding

Transcription

Recognition

result

Decoding

Adaptation

Decoding

Transcription

Recognition

result

����

Adaptation Adaptation

Fig. 2. Experimental flow of unsupervised incremental adaptation
from read speech to lectures.

that a speaker-independent read speech model was adapted to lecture
speech. We prepared 10 lectures from the Corpus of Spontaneous
Japanese (CSJ [13]), which contained more than 256 utterances, and
divided each lecture into 16 chunks, each of which consisted of 16
utterances. The incremental adaptation proceeded by the chunk as a
basic unit. Then, the following three operations were performed for a
set of utterances in each chunk 1) transcribing each utterance by au-
tomatic speech recognition using the previously obtained set of mod-
els, 2) applying adaptation to the previously obtained set of models
by using the transcriptions, and 3) again recognizing the utterances
using the adapted set of models. The adaptation performance (word
accuracy and error reduction rate) to be hereinafter used were cal-
culated by averaging the above results for the 10 lectures. Acoustic
and language model conditions are shown in Table 1. In the indi-
rect adaptation approach, we adopted the MLLR adaptation, where a
shared MLLR parameter structure was obtained by using a common
Gaussian tree construction, which was controlled by an occupancy
threshold (= 5000) [3, 4]. Then, the obtained MLLR parameters
(At+1 and bt+1) and sufficient statistics (ζt+1 and mt+1) in chunk
t + 1 were also used in the combinatorial approach (Eq. (11)) and
proposals (Eq. (5)). In the direct adaptation approach, we adopted
the MAP adaptation [5]. We set u0 = 10 with reference to the result
in [5, 9], which is used for the system noise parameter of the pro-
posal (Eq. (5)) and the hyper-parameter of the MAP (Eq. (9)) and
MLLR-MAP adaptation (Eq. (11)) 3.

Figure 3 compares adaptation based on a macroscopic time evo-
lution system (MACROS) with indirect adaptation (MLLR), direct
adaptation (MAP), and combinatorial adaptation (MLLR-MAP) in
terms of adaptation performance. MLLR quickly improved the mod-
els even by adaptation that only used the first chunk, and MAP did
not quickly but stably improved the performance, as incremental
steps of adaptation proceeded. These characteristics are easily ob-
servable from the results of error reduction rates, which were cal-
culated from the non-adapted (baseline) word error rates (Figure 3
(b)). On the other hand, MACROS and MLLR-MAP performed
well for almost all chunks, differently from MLLR and MAP. Fig-

Table 1. Acoustic and language model conditions
Sampling rate/quantization 16 kHz / 16 bit
Feature vector 12 order MFCC with energy
(39 dimensions) +Δ+ΔΔ
Window Hamming
Frame size/shift 25/10 ms
Number of temporal HMM states 3 (left to right)
Number of phoneme categories 43
Number of context-dependent HMM states 2,000
Number of mixture components 16

Language model Standard trigram (made by CSJ transcription)
Vocabulary size 30, 000
Perplexity (OOV rate) 82.2 (2.1 % )

3When MACROS and MLLR-MAP were performed in the 1st chunk and
batch adaptation, we set u0 to a large initial value (10,000)
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(a) Word accuracy
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(b) Error reduction rate
Fig. 3. Comparison of macroscopic time evolution system
(MACROS) with indirect adaptation (MLLR), direct adaptation
(MAP), and combinatorial adaptation (MLLR-MAP). Error reduc-
tion rates in (b) were calculated from the non-adapted (baseline)
word error rates.

ure 4 shows the average word accuracies of all the chunks. We can
see that MACROS (75.9%) was better than MLLR-MAP (75.1%)
by 0.8 points. It would appear that MARCOS worked more robustly
than MLLR-MAP owing to the effect of the covariance (Q̂) consid-
ered in the posterior distributions. Thus, the proposed approach out-
performed the conventional indirect and direct adaptation and their
combinatorial method by robustly utilizing their practical advantages
of quickness and stability. These results are consistent with the find-
ings of theoretical discussions in Section 3.

Figure 4 also shows a comparison between the MACROS and
batch adaptation which used all of 16 chunks at once. We see that
MACROS performed better than the batch adaptation results. As we
know from the results for a non-adapted model (baseline) in Figure
3 (a), the word accuracies in their original conditions were much
different by chunks. This suggests that the acoustic conditions of
speech can change during a period of lecture. Since the batch adap-
tation only utilizes temporally averaged statistics from data, it could
not deal with the temporal change of conditions. In contrast, the
proposed adaptation based on a macroscopic time evolution system
(MACROS) could appropriately track the temporal change of condi-
tions in a long lecture-type speech by incremental update of posterior
distributions.

5. SUMMARY
This paper analytically and experimentally revealed that incremental
adaptation based on a macroscopic time evolution system involves
both indirect and direct adaptation approaches and simultaneously
possesses their advantages of quickness and stability. The proposed
incremental adaptation framework is based on a macroscopic time
evolution system where posterior distributions are updated chunk-
by-chunk. At this time, we require 16 utterances for a chunk to
appropriately estimate the transformation parameters. In order to
follow acoustic the temporal change of acoustic conditions more
flexibly, our framework should work with fewer utterances, for ex-
ample, by estimating transformation parameters based on Bayesian
approaches (e.g. [14]).
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