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ABSTRACT
 
In this paper, we propose an acoustic and pronunciation model 
adaptation method for context-independent (CI) and context-
dependent (CD) pronunciation variability to improve the perform-
ance of a non-native automatic speech recognition (ASR) system. 
The proposed adaptation method is performed in three steps. First, 
we perform phone recognition to obtain an n-best list of phoneme 
sequences and derive pronunciation variant rules by using a deci-
sion tree. Second, the pronunciation variant rules are decomposed 
into CI and CD pronunciation variation on the basis of context 
dependency. That is, some pronunciation variant rules that are 
dedicated to the specific phoneme sequences is classified into CI 
pronunciation variation, but others are classified into CD one. It is 
assumed here that CI and CD pronunciation variabilities are in-
voked by a different pronunciation space from the mother tongue 
of a non-native speaker and the coarticulation effects in a context, 
respectively. Third, the acoustic model adaptation is performed in 
a state-tying step for the CI pronunciation variability from an indi-
rect data-driven method. In addition, the pronunciation model ad-
aptation is completed by constructing a multiple pronunciation 
dictionary using the CD pronunciation variability. It is shown from 
the continuous Korean-English ASR experiments that the proposed 
method can reduce the average word error rate (WER) by 16.02% 
when compared with the baseline ASR system that is trained by 
native speech. Moreover, an ASR system using the proposed 
method provides average WER reductions of 8.95% and 3.67% 
when compared to the only acoustic model adaptation and the only 
pronunciation model adaptation, respectively.  
 

Index Terms— Automatic speech recognition, non-native 
speech, pronunciation variability, acoustic model adaptation, pro-
nunciation model adaptation. 
 

1. INTRODUCTION 
 
In spite of an increasing need for non-native automatic speech 
recognition (ASR), the recognition performance for a non-native 
ASR system degrades extremely when compared to a system that 
focuses solely on native speech [1]. There has been considerable 
research pertaining to non-native ASR reported, and they can be 
categorized into pronunciation modeling, acoustic modeling, and 
language modeling, and a hybrid modeling. First, pronunciation 
modeling applies the pronunciation variant rules to pronunciation 
models for non-native speech [2][3]. For example, several data-
driven pronunciation modeling methods have been proposed by 
using a phoneme recognizer and a decision tree [4]-[7]. Second, 
acoustic modeling transforms and/or adapts the acoustic models to 
include the effect of non-native speech [2][8][9]. Third, language 
modeling handles the grammatical effects or speaking style of non-
native speech [10]. Finally, a hybrid approach combines these 
three approaches for further improvement of ASR performance 
[11].  

In this paper, we focus on a hybrid approach that combines an 
acoustic model and a pronunciation model adaptation method to 
improve the performance of a non-native ASR system. Especially, 
we analyze the pronunciation variability of non-native speech by 
using an indirect data-driven method, and adapt acoustic models 
and pronunciation models depending on the context-dependency of 
the pronunciation variability. To achieve our task, the pronuncia-
tion variability is first investigated with a non-native speech data-
base (DB) in an indirect data-driven method based on a decision 
tree [12]. That is, we perform phone recognition to obtain an n-
best phoneme sequences by using a development set, and derive 
pronunciation variant rules by using a decision tree, C4.5. Second, 
pronunciation variability is classified into either CI or CD pronun-
ciation variability on the basis of context dependency. In other 
words, a pronunciation variant rule that occurs in the specific pho-
neme sequence (for example, the specific left and/or right pho-
neme) is classified as a CI pronunciation variant rule. Otherwise, 
the pronunciation variant rule is classified as a CD pronunciation 
variant rule. It is assumed here that CI pronunciation variability 
reflects a different pronunciation space between a mother tongue 
and a target language. Conversely, CD pronunciation variability 
covers coarticulation effects in a context. Third, an acoustic model 
adaptation [13] and a pronunciation model adaptation [12] are 
applied to reduce CI and CD pronunciation variability, respec-
tively.  

The organization of this paper is as follows. In Section 2, pro-
nunciation variability is investigated in an indirect data-driven 
method, and is decomposed into CI and CD pronunciation vari-
abilities. After that, we propose a hybrid acoustic and pronuncia-
tion model adaptation method for both CI and CD pronunciation 
variabilities in Section 3. In Section 4, the performance of a non-
native ASR employing the proposed method is evaluated and com-
pared with that using an acoustic model adaptation alone and a 
pronunciation model adaptation alone, respectively. Finally, we 
conclude and discuss our findings in Section 5. 
 
2. DECOMPOSITION OF PRONUNCIATION VARI-

ABILITY FOR NON-NATIVE SPEECH 
 
2.1. Data-driven pronunciation variability analysis 
 
To obtain pronunciation variability for non-native speech, an indi-
rect data-driven method based on a decision tree is used, as shown 
in Fig. 1. First, each utterance in the development set of non-native 
speech is recognized by using a phoneme recognizer. The recog-
nized n-best phoneme sequences are aligned using a dynamic pro-
gramming algorithm with a reference phoneme sequence of the 
utterance, where the reference phoneme sequence is automatically 
obtained by using a CMU pronunciation dictionary [14] for the 
word of each utterance. From the alignment between the recog-
nized phoneme sequence and the reference transcription, phoneme 
rule patterns are obtained as shown in Eq. (1): 
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L1 L2 X+R1+R2                                 (1) 

 
where X is a target phoneme that is to be mapped into Y, and the 
left and right phonemes in the reference transcription are L1 and L2, 
and R1 and R2, respectively. Second, pronunciation variation rules 
are derived from the variant phoneme patterns using a decision tree. 
In this paper, C4.5 is used for the decision tree, which is a software 
extension of the basic ID3 algorithm designed by Quinlan [15]. 
Their attributes are the two left phonemes, L1 and L2, and the two 
right phonemes, R1 and R2, of the affected phoneme X. The output 
class is the target phonemes, where one decision tree is constructed 
for each phoneme. After building the decision tree based on the 
established rule formulations and filtering the phoneme-to-
phoneme mapping between the two transcriptions, we then con-
struct pronunciation variant rule sets for each phoneme using op-
tions provided by C4.5. Eq. (2) shows a structure of a pronuncia-
tion variant rule set for a phoneme, phonemetarget: 
 

Rule rule_id:      
PrevPrev=p1, Prev=p2, Next=p3, NextNext=p4

 class phonemevariant      
Default class: phonemedefault           (2)  

 
where rule_id is an identifier of a pronunciation variant rule, and 
‘PrevPrev=p1, Prev=p2, Next=p3, and NextNext=p4’ are contexts 
in which the rule_id is applied. That is, the phonemetarget is mapped 
into the phonemevariant if the context has the form of p1 p2
phonemetarget+p3+p4. Otherwise, the phonemetarget is mapped into 
the phonemedefault. A detailed explanation is described in [12].   
 
2.2. Context-dependent and context-independent pro-
nunciation variability 
 
In this subsection, we describe how to classify a pronunciation 
variability into CI and CD pronunciation variability based on the 
result described in Section 2.1.  

CD pronunciation variability is observed only in the limited 
and specific phoneme sequences such as allophones for a specific 
phoneme. For example, let us assume that a speaker utters ‘this 
spring.’ The pronunciation would be /DH IH S P R IH NG/ instead 
of /DH IH S S P R IH NG/ because the final phoneme /S/ of 
‘since’ and the initial phoneme /S/ of ‘spring’ are adjacent. Except 
for these pronunciation variants due to coarticulation effects, the 
phoneme /S/ must be pronounced as /S/. Accordingly, the pronun-
ciation variant rule sets for /S/ would be defined as follows: 
 

Rule S_rule1:      
PrevPrev=p11, Prev=S, Next=p31, NextNext=p41

 class sil    
Rule S_rule2:      

PrevPrev=p12, Prev=p22, Next=S, NextNext=p42
 class sil    

 
Default class: /S/                                                                       (3) 

As shown in Eq. (3), the phoneme /S/ is pronounced as /S/ ex-
cept for the several exceptions that are identified in the pronuncia-
tion variant rule sets, S_rule1, S_rule2 and etc. That is, the default 
class of the phoneme /S/ is /S/.  

On the other hand, CI pronunciation variability is commonly 
observed in phonemes that do not exist in a mother tongue. For 
example, let us assume that a Korean utters ‘five’. Since /F/ and 
/V/ do not exist in Korean, the Korean may mispronounce /F AY 
V/ as /P AY B/. This is because the Korean used to pronounce /F/ 
and /V/ as /P/ and /B/ that are similar phonemes in a Korean pro-
nunciation space. In this case, the pronunciation variant rule sets 
for /F/ would be defined as follows: 
 

Rule F_rule1:      
PrevPrev=p11, Prev=p21, Next=p31, NextNext=p41

 class phonemevariant_1    
Rule F_rule2:      

PrevPrev=p12, Prev=p22, Next=p32, NextNext=p42

 class phonemevariant_2      
 

Default class: /P/                                                        (4) 
 
As shown in Eq. (4), the most frequently pronounced phoneme for 
/F/ is /P/ for the Korean and therefore the default class for /F/ is 
mapped as /P/. In addition, the several exceptions for /F/ are 
mapped as the pronunciation variant rule sets, F_rule1, F_rule2, 
and etc. 

As a result, the default class of the phonemetarget is different 
from the phonemetarget for CI pronunciation variability while the 
default class of the phonemetarget is same as the phonemetarget for 
CD pronunciation variability, which is described in the second row 
of Table 1. 
 

3. COMBINATION OF ACOUSTIC AND PRONUN-
CIATION MODEL ADAPTATION FOR NON-

NATIVE SPEECH 
 
To improve the performance of a non-native ASR system, we pro-
pose a hybrid adaptation method by combining an acoustic model 
adaptation method for CI pronunciation variability and a pronun-
ciation model adaptation method for CD pronunciation variability. 

Table 1. Comparison of CD and CI pronunciation variability. 
 

Pronunciation variability 
 

Context-dependent (CD) Context-independent (CI)
phonemetarget vs. 

phonemedefault
Same Different 

Main reason Coarticulation effect Different 
Pronunciation space 

Transcription of
development set

Utterances of develop-
ment set spoken by 
non-native speakers 

Phone recognizer 

N-best list 

Alignment using dynamic programming 

Derive pronunciation variant rules 
using a decision tree 

Pronunciation variant rules 

Figure 1: Procedure for obtaining pronunciation variability from non-native 
speech by using an indirect data-driven method based on a decision tree. 

Context-independent 

Acoustic model 
adaptation 

Decompose based on context-dependency 

Context-dependent

Pronunciation variant rules 

Pronunciation model 
adaptation 

Acoustic 
model

Pronunciation 
model

ASR 
for non-native speech 

Figure 2:  Schematic diagram of an ASR system for non-native speech 
constructed by combining an acoustic and pronunciation model adaptation 
method for CI and CD pronunciation variability, respectively. 
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Fig. 2 outlines the procedure used in the proposed hybrid adapta-
tion method. That is, we first obtain the CI and CD pronunciation 
variabilities from non-native speech. After that, we perform an 
acoustic model adaptation and a pronunciation model adaptation 
for CI pronunciation variability and CD pronunciation variability, 
respectively. The following two subsections briefly review the 
acoustic model adaptation method [13] and pronunciation model 
adaptation method [12], respectively, used for the proposed hybrid 
adaptation method. 
 
3.1. Acoustic model adaptation 
 
The acoustic model adaptation method presented in [13] is used to 
obtain CI pronunciation variability that is based on an indirect 
data-driven method. That is, the pronunciation variability from 
non-native speech is investigated in an indirect data-driven method 
and the acoustic model adaptation is performed in a state-tying 
step of acoustic modeling based on the pronunciation variability. 
Fig. 3 illustrates how the proposed acoustic model adaptation 
method works. Here we assume that a phoneme ‘P’ has no variant 
phoneme but a phoneme ‘IY’ is mapped into ‘IH’, which is classi-
fied as a CI pronunciation variability. Fig. 3(a) shows a decision 
tree for the phone /P/ that has no pronunciation variants. In this 
case, the acoustic models for only /P/ are pooled on the root node 
of the decision tree. On the other hand, Fig. 3(b) shows a decision 
tree for the phoneme ‘IY’ that has a pronunciation variant ‘IH.’  
That is, * * ‘IY’+*+*  ‘IH’ in Eq. (2), where * indicates any 
phoneme. From now on, it is denoted simply as /IY/ /IH/ for CI 
pronunciation variability. In this case, the acoustic models of the 
triphones including both ‘IY’ and ‘IH’ as central phones are pooled 
on the root node of the decision tree. After clustering all the acous-
tic models using the decision tree, the models in each leaf node of 
the decision tree are tied with representative phonemes.  
 
3.2. Pronunciation model adaptation 
 
The pronunciation model adaptation method for CD pronunciation 
variability is based on the method proposed in [12], and is also 
performed as follows. The pronunciation variability from non-
native speech is first investigated in an indirect data-driven method, 
which is the same in the acoustic model adaptation described in 
Section 3.1. Next, the pronunciation variant rules are derived from 
using a decision tree, as described in Section 2.1, allowing the CD 
pronunciation variability to be identified. Finally, pronunciation 
models are adapted from the derived pronunciation variant rules. 
 

4. EXPERIMENTS AND DISCUSSIONS 
 
4.1. Baseline ASR system 
 
A subset of the Wall Street Journal database [16], WSJ0, was used 
as the training set for the native-English ASR system. WSJ0 was a 
5,000-word closed-loop task used to evaluate the performance of a 
large vocabulary continuous speech recognition system. The train-

ing set consisted of 7,138 utterances recorded by the Sennheiser 
close-talking microphone and several far-field microphones, where 
all the utterances were sampled at a rate of 16 kHz. As a recogni-
tion feature, we extracted 12 mel-frequency cepstral coefficients 
(MFCCs) with logarithmic energy for every 10 ms analysis frame, 
and concatenated their first and second derivatives to obtain a 39-
dimensional feature vector. During training and testing, we applied 
cepstral mean normalization and energy normalization to the fea-
ture vectors.  

The acoustic models were based on the 3-state left-to-right, 
context-dependent, 4-mixture, and cross-word triphone models, 
and trained using the HTK version 3.2 toolkit [17]. All the 
triphone models were expanded from 41 monophones, which also 
included a silence and a pause model, and the states of the triphone 
models are tied by employing a decision tree [18]. As a result, the 
acoustic models were composed of 8,360 triphones and 5,356 
states, which is referred to as AM0 throughout this paper. 

Figure 3: An illustration of the acoustic model adaptation in a state-tying 
step, presented in [13].  

For non-native speech, we used a subset of the Korean-Spoken 
English Corpus (K-SEC) [19], which was composed of English 
pronunciations spoken by both Korean and native speakers. This 
database was divided into three parts: a development set, an 
evaluation set, and a test set. The development set was composed 
of utterances spoken by 1 Korean speaker, where the Korean 
speaker pronounced 1,103 isolated words. The evaluation set con-
sisted of utterances spoken by 8 Koreans and 5 native speakers 
where each speaker utters 13 sentences, with an average number of 
about 7.6 words per sentence. The test set consisted of utterances 
spoken by 49 Koreans and 7 native speakers where each speaker 
spoke 14 sentences, with an average of 10.4 words per sentence. 
In order to explore the behavior of the acoustic and pronunciation 
models due to differences between the target language and the 
mother tongue, we used only the texts from the evaluation set and 
the test set to construct a language model that is a backed-off bi-
gram. The baseline pronunciation of each word was built from the 
CMU pronunciation dictionary [14] and the missing words in the 
CMU dictionary were transcribed manually. This baseline pronun-
ciation model is referred to as PM0. 
 
4.2. Acoustic model and pronunciation model adaptation 
based on context-independency 
 
To derive pronunciation variability from the development set, we 
first performed phone recognition for each utterance of the devel-
opment set by using the baseline ASR system to obtain a 20-best 
list. Second, we aligned each recognized phoneme sequence and 
the transcribed phoneme sequence. Third, the pronunciation vari-
ant rules were derived using the decision tree toolkit C4.5 [15]. 
Next, we decomposed the pronunciation variability based on the 
context-dependency. Finally, we identified the CI pronunciation 
variability as /G/  /sil/, /L/  /R/, /TH/ /DH/, /ZH/ /Z/. It is 
noted that /R/, /TH/, /DH/, /ZH/ cannot be pronounced in Korean, 
which proves that the CI pronunciation variability reflects the pro-
nunciation structure to some degree.  

Table 2 shows the average word error rates (WERs) of the 
baseline ASR system (AM0 + PM0), an ASR system with the 
adapted acoustic models and the baseline pronunciation model 
(adapted-AM+PM0), an ASR system with the baseline acoustic 
model and the adapted pronunciation model (AM0+adapted-PM), 
and an ASR system with both the adapted acoustic models and the 
adapted pronunciation model (adapted-AM + adapted-PM) for the 
evaluation set. It was shown from the first row of Table 2 that the 
average WER of the system using AM0 + PM0 was 3.69%.  

For the CI pronunciation variability, we applied the acoustic 
model adaptation method. As can be seen in the second row of 
Table 1, the average WER of the system using adapted-AM and 
PM0 decreased to 2.73%. It was also interesting that the average 
WERs for native speech and non-native speech were all reduced. 
To investigate the effect of the acoustic model adaptation for the 
CI pronunciation variability, we repeated the procedure for deriv-
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ing the pronunciation variability and classified them into CI pro-
nunciation variability and CD pronunciation variability. As a result, 
CI pronunciation variability such as /G/ /T/, /UH/ /AH/ was 
newly obtained. 

For the CD pronunciation variability, the pronunciation model 
adaptation method was applied for the pronunciation dictionary. It 
was shown in the third row of Table 2 that the average WER was 
further reduced to 2.69%, which corresponded to a relative WER 
reduction of 27.1% when compared to the baseline ASR. 
As proposed in Section 3, we combined the acoustic model adapta-
tion and the pronunciation adaptation for the CI pronunciation 
variability and the CD pronunciation variability. However, the 
performance for the evaluation set was similar to that using only 
the acoustic model adaptation.  

Table 3 shows the average WERs of the ASR systems using 
different combination of acoustic models and pronunciation mod-
els such as AM0+PM0, adapted-AM+PM0, AM0+adapted-PM, 
and adapted-AM+adapted-PM for the test set. It could be seen 
from Table 3 that the ASR systems using adapted-AM+PM0 and 
AM0+adapted-PM could reduce the average WER by 7.8% and 
12.8%, respectively, as compared to the baseline system. Moreover, 
the relative WER reduction of the ASR systems employing the 
adapted-AM+adapted-PM was 16.0%, compared to AM0+PM0. 

It could be concluded here that the combination of the acoustic 
and pronunciation model adaptation methods for CI and CD pro-
nunciation variability could improve the ASR performance further, 
when compared to the adapted acoustic model adaptation only and 
the pronunciation model adaptation only.  
 

5. CONCLUSION 
 
In this paper, we proposed a hybrid acoustic and pronunciation 
model adaptation method for context-independent (CI) and con-
text-dependent (CD) pronunciation variability to improve the per-
formance of a non-native ASR system. The decomposition of pro-
nunciation variability into CI and CD pronunciation variabilities 
was based on the assumption that CI and CD pronunciation vari-
abilities could be invoked by a different pronunciation space from 
the mother tongue of a non-native speaker and coarticulation ef-
fects in a context, respectively. The proposed acoustic and pronun-
ciation model adaptation method was performed in three steps: the 
analysis step of non-native speech, the decomposition step into CI 
and CD pronunciation variability, and the adaptation step using a 
hybrid acoustic and pronunciation model adaptation method based 
on  the decomposition results. It was shown from the continuous 
Korean-English ASR experiments that the proposed method could 

reduce the average WER by 16.02% when compared with the 
baseline ASR system that was trained by native speech. Moreover, 
an ASR system using the proposed method reduced the average 
WERs by 8.95% and 3.67% when compared with the WERs using 
the only acoustic model adaptation and the only pronunciation 
model adaptation, respectively.  

Table 2. Comparison of the average WERs (%) of the baseline ASR system 
and ASR systems with a different combination of adapted models for the 
evaluation set. 
 

Speaker 
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ASR system 
Non-
native Native Avg. Relative WER 

Reduction (%)
Baseline (AM0+PM0) 6.47 0.91  3.69 - 
adapted-AM+PM0 4.93 0.55 2.73 26.1 
AM0+adapted-PM 4.66 0.73 2.69 27.1 
adapted-AM adapted-PM 4.93 0.55 2.73 26.1 

 
Table 3. Comparison of the average WERs (%) of the baseline ASR system 
and ASR systems with a different combination of adapted models for the 
test set. 
 

Speaker 
ASR system 

Non-
native Native Avg. Relative WER 

Reduction (%)
Baseline (AM0+PM0) 19.92 0.68 10.30 - 
adapted-AM+PM0 18.12 0.88   9.50   7.8 
AM0+adapted-PM 17.28 0.68   8.98 12.8 
adapted-AM adapted-PM 16.51 0.78   8.65 16.0 
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