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ABSTRACT

Speaker normalization typically focuses on variabilities of the
supra-glottal (vocal tract) resonances, which constitute a major cause
of spectral mismatch. Recent studies show that the subglottal air-
ways also affect spectral properties of speech sounds. This paper
presents a speaker normalization method based on estimating the
second and third subglottal resonances. Since the subglottal airways
do not change for a specific speaker, the subglottal resonances are in-
dependent of the sound type (i.e., vowel, consonant, etc.) and remain
constant for a given speaker. This context-free property makes the
proposed method suitable for limited data speaker adaptation. This
method is computationally more efficient than maximum-likelihood
based VTLN, with performance better than VTLN especially for
limited adaptation data. Experimental results confirm that this method
performs well in a variety of testing conditions and tasks.

Index Terms— speech recognition, speaker normalization, VTLN,
subglottal resonance, speaker adaptation

1. INTRODUCTION

Inter-speaker acoustic variations are a major cause of performance
degradation in automatic speech recognition systems. Vocal tract
length normalization (VTLN) is one of the most popular methods
for reducing the effects of speaker-dependent vocal tract variabil-
ity through a speaker-specific frequency warping function (linear,
piece-wise linear, bilinear or multiple-parameter all-pass transforms)
[1–5]. Warping factors are typically estimated based on the max-
imum likelihood (ML) criterion over the adaptation data through
an exhaustive grid search or warping-factor specific models [1, 2].
Linear frequency warping can be implemented directly in the power
spectrum domain or in the cepstral domain through the linearization
of VTLN [3–5]. Along with the linearization of VTLN, the warping
factor can be estimated using the Expectation Maximization (EM)
algorithm with an auxiliary function [6].

Another way to reduce spectral variability is to explicitly align
spectral formant positions or formant-like spectral peaks, especially
the third formant (F3), and to define the warping factors as formant
frequency ratios [7–9]. In formant-based frequency warping meth-
ods, formant positions of different speakers are transformed into a
normalized frequency space.

In this paper, we introduce a new method for normalization. The
method is similar to formant-based frequency warping, but depends
on the subglottal resonances rather than on the formants. In Section 2
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we present a brief overview of the subglottal system and explain why
it might be useful to perform frequency warping based on the second
and third subglottal resonances (hereafter referred to as Sg2 and Sg3,
respectively). In Section 3 we describe details of the method and its
implementation. We present results of subglottal normalization in
Section 4, and conclude in Section 5.

2. SUBGLOTTAL ACOUSTIC SYSTEM

The configuration of the acoustic system below the glottis consists of
the trachea, bronchi and lungs. When the glottis is open, the subglot-
tal system is coupled to the vocal tract and can influence the sound
output, introducing additional pole-zero pairs in the vocal tract trans-
fer function, corresponding to the subglottal resonances. The pole-
zero pair introduced in the speech spectrum around Sg2 falls within
the range of 1300 to 1500 Hz for adult males, and between 1400
and 1700 Hz for adult females. When F2 crosses Sg2, F2 jumps in
frequency, resulting in a discontinuity in the F2 track [10]. This dis-
continuity can be used to detect Sg2 manually or automatically, as
described in Section 3.

Recent studies [11–13] have shown that the acoustic contrasts
for some phonological distinctive features are dependent on the sub-
glottal resonances, as illustrated in Fig. 1. For example, the vowel
feature [back] is dependent on the frequency of Sg2, such that a
vowel with F2 > Sg2 is [-back] and a vowel with F2 < Sg2 is
[+back]. The ability of Sg2 to underlie distinctive features is derived
from the fact that Sg2 is roughly constant over a variety of speech
conditions for a given speaker, since, unlike the vocal tract, the sub-
glottal airways do not have articulators that move to change the sub-
glottal resonances during speech production. For the same reason,
Sg2 might be useful in speaker normalization, since it is context in-
dependent but speaker dependent. Similarly, Sg3 has been shown to
distinguish [+ATR] from [-ATR] front vowels. In this paper, we re-
port our first attempt at subglottal resonance-based speaker normal-
ization. Since the role of Sg2 and Sg3 in defining certain distinctive
features has been more thoroughly studied than that of Sg1, we fo-
cus on the application of Sg2 and Sg3 to speaker normalization and
leave the exploration of Sg1 for future work.

3. SUBGLOTTAL RESONANCE NORMALIZATION

3.1. Estimation of the subglottal resonances

As noted above, when F2 crosses Sg2, there is a discontinuity in the
F2 track. If the F2 values on the high and low frequency side of the
discontinuity are F2high and F2low, respectively, then Sg2 can be
estimated as:
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Fig. 1. Illustration of the relative positions of vowel formants F1 and
F2 (in circles) and the subglottal resonances (Sg1, Sg2 and Sg3) for
an adult male speaker (based on data reported in [11]).
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Fig. 2. An example of the automatic detection algorithm for a nine-
year-old child speaker.

Sg2 = (F2high + F2low)/2 (1)
The Snack sound toolkit [14] was used to generate the F2 track.

The F2 discontinuity was detected automatically based on the smoothed
first order difference of the F2 track. The algorithm parameters were
calibrated using the subglottal resonance data reported in [11]. The
threshold for detecting the discontinuity is not speaker specific and
the same value was used for all test subjects. Fig. 2 illustrates the
automatic detection algorithm. If no discontinuity is detected, then
Sg2 is assumed to be F2.

To test the reliability of the automatically estimated subglottal
resonances, we manually measured the Sg2 frequencies for the 50
kids in the test set of the TIDIGITS database using the adaptation
data (1, 4, 7, 10 or 15 digits) described in Section 4. The manual
Sg2’s were estimated from the speech spectrum and also based on
the F2 discontinuity. Comparison of the manual Sg2 frequencies
with the automatically detected Sg2 values shows that the automatic
detection algorithm agreed with the manually measured Sg2 values
to within 7%. With more reliable formant tracking and discontinuity
detection algorithms, the accuracy of the detected Sg2 values can be
further improved.
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Fig. 3. Vowel formants F1 and F2 before and after VTLN and Sg2-
based warping for a nine-year-old girl’s vowels.

It is more difficult to detect Sg3 because the pole-zero pair in-
troduced around Sg3 is less prominent than that of Sg2. To estimate
the Sg3 frequency, we derived the following empirical relation be-
tween Sg2 and Sg3 based on the model of the lower airway described
in [11]:

Sg3 = Sg2 ∗ {−0.3114 ∗ [log
10

(Sg2)− 3.280]2 + 1.436} (2)

For Sg2 frequencies in the range from 1200 Hz to 3000 Hz, Eq. 2
fits the modeled calculations to within 0.2%. Since Sg2 for adults
and children lies within this range, we used this relation to calculate
all Sg3 values.

3.2. Comparison of VTLN and Sg2 frequency warping

Similar to formant normalization, the warping ratio for subglottal
resonance normalization is defined as:

α = Sg2r/Sg2t (3)
where Sg2r is the reference subglottal resonance and Sg2t is the
subglottal resonance of the test speaker. The reference Sg2 is defined
as the mean value of all the training speakers’ Sg2’s.

Fig. 3 shows F1 and F2 values from a nine-year-old girl before
and after warping using VTLN, and the Sg2 ratio. The line ‘Sg2’ is
the reference second subglottal resonance for an adult male speaker
(as in Fig. 1). Compared to Fig. 1, unwarped data (+) demonstrate an
obviously different pattern as to the relative positions of the formants
with respect to the reference Sg2. For instance, the back vowels [U]
and [u] have higher F2 values than the reference Sg2, while in Fig. 1
F2’s of all the back vowels lie below the Sg2 line. It is necessary to
apply frequency warping to achieve the reference formant position
pattern. Both VTLN (Δ) and Sg2 (◦) warping work well in this point
of view, although Sg2 warping yields a formant pattern more similar
to the reference speaker’s.

4. EXPERIMENTAL RESULTS

Since VTLN has been shown to provide significant performance im-
provement on children’s speech recognition, we first evaluate the
subglottal normalization method on a connected digits recognition
task of children’s speech using the TIDIGITS database. To further
verify the effectiveness of this method, we also test the performance
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on a medium vocabulary recognition task using the DARPA Re-
source Management RM1 continuous speech database. For the two
databases, speech signals were segmented into 25ms frames, with a
10ms shift. Each frame was parameterized by a 39-dimensional fea-
ture vector consisting of 12 static MFCCs plus log energy, and their
first- and second-order derivatives. For the TIDIGITS task, acoustic
HMMs were monophone-based with 3 states and 6 Gaussian mix-
tures in each state. For the RM1 database, triphone acoustic models
were used with 3 states and 4 Gaussian mixtures per state. VTLN
was implemented based on a grid search over [0.7, 1.2] with a step-
size of 0.01. The scaling factor producing maximal average likeli-
hood was used to warp the frequency axis of the power spectrum [2].

In the TIDIGITS experiment, acoustic models were trained on
55 adult male speakers and tested on 50 children. The baseline word
accuracy is 55.76%. For each child, the adaptation data, which con-
sisted of 1, 4, 7, 10 or 15 digits, were randomly chosen from the
test subset to estimate the Sg2 and VTLN warping factors. Table
1 shows the recognition accuracy for VTLN and Sg2 warping with
various amounts of adaptation data, where Sg2(A) represents results
using the automatically estimated subglottal resonance and Sg2(M)
represents results using the manually measured subglottal resonance.
Besides normalizing only Sg2, we also tested the performance of
normalizing both Sg2 and Sg3 via a piece-wise linear warping func-
tion, referred to as Sg2&Sg3 in Table 1.

Number of adaptation digits
1 4 7 10 15

VTLN 90.39 90.62 92.02 92.89 94.49
Sg2(A) 92.42 92.73 93.37 93.43 93.85
Sg2(M) 94.63 94.67 94.60 94.61 94.55

Sg2&Sg3(A) 94.60 94.72 95.03 95.09 95.70
Sg2&Sg3(M) 96.58 96.63 96.56 96.65 96.62

Table 1. Word recognition accuracy on TIDIGITS. Sg2(A) and
Sg2(M) represent the automatic and manual Sg2’s, respectively.
Sg2&Sg3 refers to the use of both Sg2 and Sg3 for normalization.

When the amount of adaptation data is small, Sg2 normalization
offers better performance than VTLN. For instance, with only one
digit for normalization, both the automatically estimated and man-
ually measured Sg2 normalization outperform VTLN by about 2%
and 4%, respectively. VTLN outperforms Sg2(A) when more data
are available, while the Sg2(M) provides comparable performance to
VTLN even with 15 adaptation digits. When performing both Sg2
and Sg3 normalization, an additional improvement (around 2%) can
be achieved over the Sg2 normalization, and even when more data
is available Sg2 and Sg3 normalization outperform VTLN by 1-2%.
The improvements are statistically significant for p < 0.05.

One notable feature about the Sg2 normalization is that the per-
formance of the manually measured Sg2 is independent of the amount
of normalization data. Since the configuration of the subglottal sys-
tem is essentially fixed and independent of the speech content, the
subglottal resonances are expected to remain unchanged for a spe-
cific speaker. This content-independent property of the subglottal
resonances makes it highly suitable for limited data adaptation. For
instance, with only one adaptation digit, Sg2(M) provides slightly
better performance than VTLNwith 15 adaptation digits, while Sg2(A)
performs comparably to VTLN with 7 or 10 adaptation digits. Al-
though automatic detection of Sg2 was fairly accurate, it was not
exact and there is thus a gap between the performance of Sg2(A)
and that of Sg2(M). With more accurate Sg2 detection algorithms,
we may expect closer performance to that of the manual Sg2.
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Fig. 4. Relative performance improvement over the baseline with
only one adaptation digit for 10 speakers.

Since this TIDIGITS setup is a highly mismatched case, the ex-
periments are used to demonstrate the effectiveness of subglottal
resonance-based speaker normalization. As a next step, we tested
the method on the RM1 database for both a medium-mismatched
case and a matched case. For the mismatched case, HMM models
were trained on 49 male speakers from the speaker independent (SI)
portion of the database, and tested on 23 female speakers in the SI
portion. The baseline word recognition accuracy was 59.10%. For
the matched case, the HMM models were trained on the SI training
portion of the database with 72 adult speakers, and tested on the SI
testing set. The baseline performance was 92.47% word recognition
accuracy. In both cases, the same utterance was used to estimate the
Sg2 and VTLN warping factor for all speakers. Table 2 shows the
results.

Accuracy mismatched matched
Baseline 59.10 92.47
VTLN 86.65 93.91
Sg2(A) 87.93 93.79

Sg2&Sg3(A) 89.38 94.67

Table 2. Word recognition accuracy on RM1 with one adaptation
utterance.

For the mismatched case, Sg2 normalization provides better per-
formance than VTLN with 1.3% absolute improvement. For the
matched case, the performance of Sg2 is slightly worse than VTLN
but still comparable. This may be due to the accuracy of the auto-
matically estimated Sg2’s, as discussed above. The combination of
Sg2 and Sg3 normalization is a little better even in the matched case.
The improvements are statistically significant for p < 0.01. From
the computation point of view, subglottal (Sg) normalization is more
efficient than VTLN, since VTLN relies on an exhaustive grid search
over the warping factors to maximize the likelihood of the adaptation
data, while for Sg normalization the main computational cost comes
from formant tracking which can be estimated efficiently.

4.1. Choice of adaptation data

Since the automatically estimated Sg2 is based on the discontinuity
of the F2 track, the Sg2 detectability in the adaptation data is impor-
tant to the performance of this normalization method. To examine
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Fig. 5. Spectrograms for digits ‘five’ (top) and ‘six’ (bottom) from
a boy. The digit ‘five’ has a clear F2 transition from low to high
(with a discontinuity indicated by the ellipse), while the digit ‘six’
(bottom) has a relatively constant F2 value.

this effect, we tested the performance for 10 randomly chosen speak-
ers (5 boys and 5 girls) with only one adaptation digit (‘zero’, ‘one’,
..., or ‘oh’) and plotted the relative improvement over the baseline in
Fig. 4. Performance is greatly improved (on average about 90% im-
provement) when the adaptation digit is ‘zero’, ‘two’, ‘three’, ‘five’,
‘eight’ or ‘nine’; it is moderately improved (on average around 80%
improvement) when the adaptation digit is ‘one’, ‘four’, ‘seven’ or
‘oh’; and it is least improved (on average less that 70% improve-
ment) when the adaptation digit is ‘six’. A tentative explanation is
as follows. To be effective, Sg2 must be accurately estimated from
the adaptation data. If the adaptation data contain formant transi-
tions that cross Sg2 (e.g., in the diphthong [ai] in ‘five’, Fig. 5, top
panel), Sg2 can be accurately detected from the F2 discontinuity and
results in a large performance improvement. On the other hand, if
there is no clear transition (as in ‘six’ for some speakers, e.g., Fig. 5,
bottom panel), Sg2 cannot be accurately detected and thus the algo-
rithm will normalize with respect to F2 instead of Sg2, resulting in
a smaller performance improvement.Therefore, the choice of adap-
tation data can potentially have an effect on the detection of Sg2 and
thus the normalization performance.

5. SUMMARY AND DISCUSSION

This paper proposed a speaker normalization method based on the
second and the third subglottal resonances. This normalization method
defines the warping factor as the ratio of the reference subglottal
resonance to that of the test speaker. The second subglottal reso-
nance was automatically detected based on the discontinuity of the
F2 track. The third subglottal resonance was calculated using an
empirical formula derived from a subglottal airway model. The final
warping function is piece-wise linear taking into account both the
second and third subglottal resonances.

A variety of evaluations using TIDIGITS and RM1 databases
show that the second subglottal resonance normalization performs
better than or comparable to VTLN, especially for limited adapta-
tion data. The combination of the second and the third subglottal
resonances outperforms VTLN in all cases. The method is compu-
tationally more efficient than VTLN.

An obvious advantage of this method is that the subglottal res-

onances do not appear to vary by speech sound. The experimen-
tal results on the TIDIGITS database using the manually estimated
second subglottal resonance bear out this property. This method is
potentially independent of the amount of available adaptation data,
which makes it suitable for limited data adaptation.

The performance difference between the automatically estimated
Sg2 and the manually measured Sg2 implies that with more accurate
detection algorithm, we can expect improved performance.

For future work, we will evaluate the effectiveness of this method
on a large vocabulary database, and test with other features and nor-
malization techniques.
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