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ABSTRACT

The most commonly used approaches to speaker adaptation are
based on linear transforms, as these can be robustly estimated using
limited adaptation data. Although significant gains can be obtained
using discriminative criteria for training acoustic models, maximum
likelihood (ML) estimated transforms are used for unsupervised
adaptation. This is because discriminatively trained transforms are
highly sensitive to errors in the adaptation hypothesis. This pa-
per describes a new framework for estimating transforms that are
discriminative in nature, but are less sensitive to this hypothesis
issue. A discriminative, speaker-independent, mapping transfor-
mation is estimated during training. This transform is obtained
after a speaker-specific ML-estimated transform has been applied.
During recognition an ML speaker-specific transform is found and
the speaker-independent discriminative mapping transform then ap-
plied. This allows a transform which is discriminative in nature to be
indirectly estimated, whilst only requiring an ML speaker-specific
transform to be found during recognition. The scheme is evaluated
on an English conversational telephone speech task, where it signif-
icantly outperforms both standard ML and discriminatively trained
transforms.

Index Terms— Speaker adaptation, discriminative training.

1. INTRODUCTION

Linear transformations of the acoustic model parameters are the
most commonly used approaches for speaker adaptation when there
is limited training data [1, 2]. If unsupervised adaptation is required,
for example in broadcast news transcription or conversational tele-
phone speech, these transforms are usually found using Maximum
Likelihood (ML) estimation. Though discriminative criteria are
commonly used for training acoustic models [3], performance gains
for speaker adaptation in an unsupervised mode have been lim-
ited [4, 5]. This is because discriminative criteria are more sensitive
to errors in the hypotheses (or references) than the ML criterion.
The sensitivity to the hypothesis may be reduced using, for exam-
ple, confidence scores [6] or lattice-based approaches for improved
hypotheses [7] but the gains are still small compared to ML esti-
mated transforms. Thus despite gains in supervised adaptation [8],
unsupervised discriminative adaptation is not commonly used.

A number of approaches have been proposed for combiningML-
estimated transforms with discriminatively trained models. For ex-
ample simplified discriminative speaker adaptive training (SAT) [9,
4], discriminative cluster adaptive training [10], and feature MPE
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(fMPE) [11] or region-dependent feature transforms [12] have all
been successfully used in speech recognition. A general attribute of
all these schemes is that all speaker-specific parameters of the sys-
tem are estimated in an ML-fashion, whereas speaker-independent
aspects of the system may be trained using discriminative criteria.
This paper applies the same general approach to training discrim-
inative linear transforms, whilst using ML to estimate all speaker-
specific parameters.

The procedure adopted in this work is to use a speaker-independent
mapping transform from one form of training criterion to another.
This will be referred to as a criterion mapping function (CMF). The
specific form examined in this work is to map a speaker-specific
ML-estimated linear transform to be more similar to a Minimum
Phone Error (MPE) discriminatively trained transform. A linear
transform will be used, referred to as a discriminative mapping
transform (DMT). In theory this approach can be applied to any
form of linear transform, either mean, covariance or features. Here
Maximum Likelihood Linear Regression (MLLR) adaptation of the
means will be examined.

This paper is organised as follows. In section 2, linear trans-
forms are reviewed, and how they are used in combination with dis-
criminative training discussed. The new framework and estimation
of DMT is detailed in section 3. Experiments on an English con-
versational telephone speech (CTS) task are described in section 4
followed by conclusions and future work.

2. LINEAR TRANSFORMS FOR ADAPTATION

Linear transformations are the most commonly used approaches
to speaker adaptation with limited training data. Linear transform
based speaker adaptation was initially investigated with ML esti-
mation. For mean MLLR adaptation [1], the transformed mean for
speaker s, μ̂(s), can be expressed as
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is the extended linear transform of speaker s. The parameters of the
transform,W(s)

ml
are estimated using the ML criterion [1]
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where O
(s) and H(s) are the observations and reference/hypothesis

of the adaptation data for speaker s respectively, and λ are the model
parameters. An important issue is where the hypothesis, H(s), is
obtained from. If it is known a-priori, this is supervised adaptation.
If it must be found using an acoustic model, possibly with an current
estimate of the transform, this is unsupervised adaptation.
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Rather than using the ML criterion it is possible to use a discrim-
inative training criterion, such as MPE. Transforms estimated using
these discriminative criteria are referred to as discriminative linear
transforms (DLTs). Here the form of adaptation remains the same,
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] is the DLT of speaker s. However DLTs
are estimated using, for example, the MPE criterion which can be
expressed as
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where P (H|O(s),W) is the posterior probability of hypothesis H
given the observation from speaker s and the transform parameters,
L(H,H(s)) is the loss function of H given the supervision H(s)

measured at the phone level. DLTs have been successfully used in
supervised adaptation [8] where H(s) is known for the adaptation
data. However gains have been limited using this form of transform
in an unsupervised fashion. Discriminative criteria are far more sen-
sitive to the reference used than ML-based schemes. Improved per-
formance can be obtained using, for example, lattice adaptation but
gains over ML-trained transforms have been disappointing.

ML-trained transforms for unsupervised adaptation are often
used in combination with discriminatively trained model param-
eters, λ. In simplified discriminative speaker adaptive training
(SAT) [9, 4], the canonical HMMs are discriminatively updated
given the ML estimated speaker transforms. During adaptation,
ML transforms are estimated for each speaker and applied to the
discriminative SAT model. Discriminative cluster adaptive training
(CAT) [10] follows a similar procedure but uses multiple-cluster
models as the canonical model. ML-estimated interpolation weights
are estimated during training and recognition. In both discrimina-
tive SAT or CAT, the discriminative criterion is only used for the
model parameters, not for the speaker-specific transform parameters.
Discriminatively trained feature transforms such as Feature MPE
(fMPE) [11] and region-dependent feature transforms (RDFT) [12]
have also been used in combination with ML-estimated speaker
transforms. In these approaches, the acoustic space is partitioned
into regions, region-dependent matrices are discriminatively trained
and used to transform the features. These discriminative transforms
may be built on top of a speaker-specific ML-adapted feature-
space. All these schemes adopt the same general strategy. Speaker
independent parameters can be discriminatively estimated. All
speaker-specific parameters, the transforms, are ML trained.

3. DISCRIMINATIVE MAPPING TRANSFORMS

Criterion mapping functions (CMFs) use the same general approach
described above, but introduce a speaker independent transforma-
tion of the speaker-specific transforms. This CMF aims to map, for
example, ML-trained transforms into discriminative transforms. As
there is no discriminative estimation of speaker-specific transforma-
tions, used in the DLT, the sensitivity to the hypotheses should be
reduced. Here the speaker-specific DLT is found using

W
(s)
dl

= F(W
(s)
ml

;Λ) (5)

where W
(s)
ml
is the speaker-dependent ML transform found using

equation (2),F(·) is the mapping function with speaker-independent

parameters, Λ. As the parameters of the CMF are speaker indepen-
dent they may be trained on all the training data. This has two advan-
tages in training. First there is a large amount of training data to esti-
mate the mapping function. Second the references are known for the
training data, so there are no hypotheses sensitivity issues. An ad-
ditional advantage is that during recognition only an ML-estimated
transform is required to be estimated. This avoids the need to gen-
erate lattices, for example, which is required for directly estimating
DLTs. The rest of this section describes a specific implementation
of the the CMF based on linear transforms.

A simple form of the CMF is to use linear transformations of the
ML transform parameters W

(s)
ml
to obtain the discriminative trans-

formation. This is referred to as a discriminative mapping transform
(DMT). One form of transformation is

vec(W(s)
dl

) = Hdlvec(W(s)
ml

) + cdl (6)

where vec()maps the matrix to a vector form,Hdl is an n(n+1)×
n(n + 1) matrix and cdl is a n(n + 1) vector (for an n-dimensional
feature vector). In this initial investigation a simpler form of trans-
formation is used. Hdl is restricted to be block-diagonal in structure.
The transformation can then be expressed as
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ml
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whereAdl and βdl are now the speaker-independent DMT parame-
ters. For mean adaptation, this yields the following transformation
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If the DMT is further restricted so thatBdl = 0, this leads to
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where ξ
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1]T . The advantage of this form of simplifi-
cation is that the speaker-independent linear transform parameters,
Wdl, can be estimated in a similar fashion to the standard DLTs in
equation (3). The training criterion can be expressed as
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where λ
(s)
ml

is the ML-transform adapted model parameters for
speaker s. Thus rather than accumulating statistics using the origi-
nal HMM (as in the DLT), the DMT estimation uses speaker-specific
ML-adapted HMM parameters and sums over all training speakers.
The update formulae of DMT are similar to the standard DLT ones,
which can be found in [6]. This is the form of DMT investigated in
this paper.

The presentation of the DMT has so far only considered a sin-
gle transformation. Given the simplifications from the more pow-
erful transform in equation (6), it would be useful to have multi-
ple DMT linear transforms, in the same fashion as having multiple
MLLR transforms [13]. The same approach to clustering Gaussians
together to form multiple base-classes, clustering in acoustic space
or based on phonetic characteristics, can be used. Note, as the DMT
transform estimation uses all the available training data, the num-
ber of transform classes may be made larger than is usually used for
standard speaker adaptation.

Though mean adaptation is considered in this paper, the DMT
can also be applied to variance or constrained MLLR (CMLLR)
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adaptation [14, 2]. When using DMTs with CMLLR, it be-
comes a speaker-independent discriminative feature mapping. It
is interesting to contrast this DMT transformation with fMPE or
RDFT. As discussed in section 2, fMPE and RDFT both use a
speaker-independent discriminatively trained transform on top of
the speaker-dependent CMLLR adapted features. This is similar
to the idea of DMT. However, fMPE and RDFT both use posteri-
ors of the adapted features and directly estimate the discriminative
transforms. In contrast, DMT trains a mapping from a ML feature-
transformation to a discriminative feature space and is dependent on
the component being transformed.

4. EXPERIMENTS

The performance of discriminative mapping transforms was evalu-
ated on a large vocabulary English conversational telephone speech
(CTS) task. The training dataset consisted of 5446 speakers, about
296 hours of data. The sources were the LDC Call-home English
(che), Switchboard (Swbd) and Switchboard-Cellular (SwCell)
datasets. The test set was the eval03 dataset, consisting of 144
speakers, about 6 hours. All systems used a 12-dimensional PLP
front-end with the C0 energy and its first, second and third deriva-
tives with side-level Cepstral mean and variance normalisation. An
HLDA transform was applied to reduce the feature dimension to 39.
VTLN was also used. State-clustered triphone HMMs with 6K dis-
tinct states and an average of 16 Gaussian components per state were
used. All adaptation was carried out in an unsupervised mode (there
was no supervised adaptation data available).

Minimum phone error (MPE) [3] was used to train all the
acoustic models. Two MPE systems were built. One was a speaker-
independent (SI) MPE system. The second was a mean-MLLR
based MPE speaker adaptive training (SAT) system [15]. Here an
ML-based MLLR SAT system was built and then only the canon-
ical model was updated using the MPE criterion given the ML
transforms. During unsupervised adaptation, 4 iterations of MLLR
estimation was first performed given the hypotheses from the MPE
SI system. As a contrast standard DLTs were also estimated. Here
MLLR was initially applied and used to generate the 1-Best hypoth-
esis as the numerator for DLT estimation. The ML-SI model and a
heavily pruned bi-gram language model were used to generate de-
nominator lattices. For all experiments separate speech and silence
transforms were used for MLLR and DLT.

4.1. Effectiveness of DMT

As the DMT performs a mapping of the ML-transform into the MPE
space it is interesting to see how effective this mapping is in terms
of increasing the criterion value on the test data using the estimated
ML transform. These experiments used the MPE-SI models. For
the DMT 1000 regression classes were used. The MPE criterion1
values of the test data (the 1-Best hypothesis generated from MLLR
adapted MPE-SI model was used as numerator) are shown in table 1
for the standard MLLR transform as well as when combined with
the DMT,

The table shows the change in criterion when using the DMT
estimated using 1, 2, or 3 training iterations. From table 1, DMT
improved the MPE criterion values compared to the MLLR adapted
model. Increasing the training iteration gave higher values. This
shows that the discrimination power of the DMT generalises to the
test data and when the ML-transform is estimated on error-full hy-
potheses. As a contrast it is also possible to compare these MPE
values with those obtained when estimating a DLT directly. After

1This is one minus the normalised form of equation (4).

Adaptation Training Iteration
1 2 3

MLLR 0.793
+DMT 0.800 0.802 0.803

Table 1. MPE Criterion values of MLLR and MLLR+DMT

1-iteration of test-set DLT estimation, the criterion is 0.855, and af-
ter 2 iterations, 0.889. These higher criterion values are expected as
the DLT is able to tune to the test hypotheses more than the DMT.
However, this tuning means that after more than one DLT iteration
the performance degrades. In these results only the WERs of one
iteration of DLT estimation are reported.

4.2. Number of Base-Classes

As discussed in section 3, to improve the power of DMTs, large
number of transforms, base-classes, may be used. Three sizes of
base-class were examined, 2, 46 and 1000. The 46 base-classes were
estimated using either acoustic clustering or phone information. The
results are shown in table 2. The first line in the table gives the
baseline MLLR performance.

Gaussian # Class Train Iteration
Clustering 1 2 3

—- 27.0
2 27.0 — —

Acoustic 46 26.9 — —
1000 26.7 26.4 26.2

Phone 46 26.8 26.7 26.7

Table 2. WER% using DMT with different base-class sizes

From table 2 increasing the number of base-classes improves
performance. For the 2 base-class system there is no gain over the
baseline MLLR system. Both the 46-class phone and acoustic clus-
tered systems show slight gains after 1 DMT training iteration. The
best performance was obtained using the 1000 base-classes. Perfor-
mance with this system also improved with the number of DMT it-
erations, in-line with the MPE-criterion gains in table 1. Using three
training iterations and 1000 base-classes a 0.8% absolute reduction
in WER was obtained over the MLLR baseline.

An interesting contrast is to see whether the DMT is really learn-
ing a criterion mapping rather than a transformation of a MLLR-
transform to more phone-specific transforms. An ML-to-ML map-
ping transform was estimated using the 46 phone base classes. This
increased the test-set ML criterion but decreased the MPE criterion
compared to MLLR, the opposite is true for the ML-to-MPE DMT.
The ML-to-MLmapping degraded the MLLR performance by 0.1%.

4.3. Effect of Hypothesis Quality

One of the motivations for the use of the DMT was that it should be
less sensitive to errors in the adaptation data hypotheses. To investi-
gate this effect in detail, three adaptation supervisions were used to
estimate the transforms. The baseline hypotheses used to date were
generated by the unadapted MPE-SI model. As an alternative, this
adapted model was then used to generate lattices which were used in
a lattice MLLR adaptation framework [7]. As alternative hypothe-
ses in the lattice are used, this form of estimation is less sensitive
to hypothesis errors. Finally, the correct reference was used. These
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three forms of transform were used to generate MLLR transforms,
to which DMTs could then be applied. For the DLT the numerator
was generated using the MLLR or lattice MLLR adapted MPE-SI
model. However, for the reference hypotheses case, this was used
directly as the numerator for the DLT.

Adaptation Supervision
1-Best Hyp. Lattice Hyp. Reference

MLLR 27.0 26.7 24.3
+ DMT 26.2 25.9 23.4
DLT 26.8 26.6 21.7

Table 3. WER% using different supervision hypotheses

Table 3 gives the WER comparison using these different super-
vision hypotheses. For MLLR, using the reference obtained 2.7%
absolute gain over the 1-Best hypothesis and 2.4% over the lattice
supervision. This is similar to DMT performance differences. In
contrast, for DLT, the reference gained 5.1% over 1-Best and 4.9%
over lattice supervision, which are far larger than MLLR with and
without DMT. This confirms that the DMT is less sensitive to the
quality of supervision and suitable for unsupervised adaptation. It is
also interesting to note that with error-full hypotheses, either 1-Best
or lattice, DMT always significantly outperformed DLT and MLLR.
But with reference supervision, DLT was significantly better than
DMT. This is expected because DMT is estimated on the training
data set and is not tuned to the reference as heavily as DLT.

4.4. DMT on adaptively trained system

The previous experiments were based on the MPE-SI model. Using
DMTs with MPE-SAT models was also investigated. The compari-
son between different adaptation approaches on MPE-SI and MPE-
SAT models are shown in table 4 using a 1000 base-class DMT ob-
tained with 3 training iterations.

Adaptation MPE-SI MPE-SAT
MLLR 27.0 26.4
+ DMT 26.2 25.6
DLT 26.8 26.3

Table 4. WER% using DMT with MPE-SI and MPE-SAT models

From table 4, MLLRwith and without DMT, and the DLT on the
MPE-SAT system both significantly outperformed the correspond-
ing MPE-SI systems. The gains of using the DMT with MLLR over
the baseline MLLR system and DLT were retained for the MPE-SAT
system. Using MLLR with DMT gave a 0.8% absolute reduction in
WER over the standard MLLR system and 0.7% absolute over the
DLT system. For these experiments the DMT was only used during
test, not during the SAT training stage. This will be investigated in
future work.

5. CONCLUSION AND FUTUREWORK

This paper has described a new framework for robust discriminative
unsupervised adaptation. In this framework, a speaker-independent
criterion mapping function (CMF) is estimated during training and
used to map the ML estimated speaker-dependent transforms to a
more discriminative form. As only ML-adapted speaker-specific
transforms are estimated on the adaptation data, the transform is not
highly sensitive to the adaptation hypotheses, which is a major issue

with standard discriminative estimation of linear transforms. A sim-
ple initial implementation of the CMF based on linear transforms is
described. This is referred to as a discriminative mapping transform
(DMT). The approach is applied to MLLR adaptation in this paper.
Experiments on a CTS English task illustrated that DMT can signifi-
cantly outperform standard DLT for both discriminatively trained SI
and SAT models in unsupervised adaptation.

This paper has only described initial experiments on CMFs. A
number of alternative transforms and applications, such as during
adaptive training and more complex transforms, will be investigated
in future work.
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