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ABSTRACT

This paper describes a new method for fast speaker adaptation in
large vocabulary recognition systems. As in most HMM-based rec-
ognizers, the observation densities are modeled as a weighted sum
of Gaussian densities. Instead of adapting the means of the Gaus-
sian densities, which is typically done, the weights for the Gaussian
densities in the states are adapted. By applying non-negative matrix
factorization (NMF) in the proposed method, very fast adaptation
was achieved. Experiments on the Wall Street Journal benchmark
recognition task show relative improvements between 5% and 15%,
while the adaptation converges within 0.2 seconds. Analysis of the
latent speakers found by NMF learns that these latent speakers re-
flect the gender of the speaker most prominently, even when vocal
tract length normalization is used, and that they reflect the speaker’s
age more clearly than the speaker’s regional influences or dialect.

Index Terms— Speech recognition, adaptive systems, speaker
adaptation, matrix decomposition, non-negative matrix factorization.

1. INTRODUCTION
In acoustic modeling, the term adaptation (of the acoustic model to
the incoming speech to be recognized) often refers to two distinct
phenomena. In the first type of adaptation, the model specializes for
some specific situation it was trained on: depending on the train-
ing database, this situation may refer to a speaker, speaker dialect,
speaking style, recording environment (channel, noise), etc. The sec-
ond type of adaptation refers to adapting to a new situation the model
was not trained for: the distributions in the model should move from
the situation trained on, to the situation at hand.

In this paper, the experiments are based on the speaker indepen-
dent Wall Street Journal (WSJ) benchmark recognition task. There-
fore the acoustic model training data contains many speakers but
only one environmental condition. Therefore we’ll call adaptation
that has to specialize speaker adaptation, and adaptation that has to
move distributions environment adaptation.

The top of figure 1 depicts two typical cases (in two dimensions).
Starting from the original distribution of the training data for some
HMM state on the left, the middle shows the case in which the in-
coming speech matches the training data so only speaker adaptation
is needed. To the right, there is no match with the training data and
therefore both speaker and environment adaptation are needed.

In HMM-based acoustic modeling in which states are modeled
as a weighted sum of Gaussian probability density functions (pdfs),
adaptation techniques that change mean (and possibly covariance) of
the Gaussians pdfs are plain text book material (see e.g. chapter 9.6
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Fig. 1. Types of adaption in acoustic modeling

in [1]). What happens is shown in the middle of figure 1 for both
cases (without and with environment adaptation). The crosses rep-
resent the means of the Gaussian pdfs, and if adaptation works well,
they move for both cases to the distribution that is to be modeled.

Adaptation techniques that change the weights in the weighted
sum of Gaussians pdfs that models the HMM state, got only little
attention in literature. One reason probably is that only recent, de-
tailed acoustic models, with many Gaussians pdfs per state, can ben-
efit from weight adaptation. Recently some papers appeared that
base weight adaptation on non-negative matrix factorization (NMF),
a technique suitable for matrices with (non-negative) weights.

In [2], the matrix of weights that is decomposed by NMF, is
organized so that adaptation in the phonetic space results. The pro-
posed method basically provides an elegant re-estimation of a large,
detailed model based on a task specific database of any size, as long
as no (severe) environment adaptation is needed.

In [3], the weights (or more precisely directly related values)
in the matrix are organized per speaker, so only speaker adaptation
is possible. In fact, no real model adaptation is used: information
gained from the matrix decomposition is applied directly for rescor-
ing hypotheses during search. The viewpoint of the paper is to pro-
vide a solution to speech trajectory folding in HMM-based systems
(due to statistical modeling per state): it is argued that automatically
generated trajectories mainly correlate to speaker variation.

While the work in this paper is closely related to the work in [3]
(so the interpretation as a solution to trajectory folding still holds),
we aim at pure speaker adaptation based on the weights in the acous-
tic models. The effect of the adaptation is shown at the bottom of
figure 1. In this case, the means of the Gaussian pdfs can’t move.
However weights may become (almost) zero, as indicated by gray,
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dashed crosses in the figure. It is clear that speaker adaptation is pos-
sible with this method, however environment adaptation is not (or at
least not in all cases).

Even though adaptation of the means of the Gaussian pdfs is the-
oretically more powerful (allowing both speaker and environment
adaptation) than weight adaptation (allowing only speaker adapta-
tion), it also has some drawbacks. First, the extra power may lead
to adaptation that deteriorates the modeling, e.g. in unsupervised
mode. Second, mean adaptation results in one, total transform for
both speaker adaptation and environment adaptation. When a meet-
ing is to be transcribed, and a new speaker comes in, it’s useful to
initiate a new model that is adapted to the environment only. Fur-
thermore, since the proposed weight adaptation is very fast (as will
be shown), it may be used as a first step, based on which slower
adaptation methods can be applied.

This paper is organized as follows: in sequence we describe the
proposed system (section 2), the setup (section 3), the results (sec-
tion 4) and analyses (section 5) of the experiments, and finally con-
clusions and future research (section 6).

2. SYSTEM DESCRIPTION

2.1. Overview
The general idea of the proposed method is to model a test speaker
as the optimal linear combination of a number (e.g. 10) latent (or
base) speakers given the incoming speech. These latent speakers
result from a matrix decomposition on a matrix V containing the
reference speakers, these are the (e.g. 100) speakers in the acoustic
model training database.

This matrix V is constructed so that every column of the matrix
contains a model for one of the NR reference speakers in the training
database. A speaker model consists of a concatenation of all weights
v(k) for all NS states s and for all NCs components in the weighted
sum of Gaussian pdfs that models state s, with 1 � k � TNC. TNC
is the total number of weights for all states: TNC =

PNS
s=1 NCs, this

ranges typically from 105 to 106. The speaker dependent weights
for a reference speaker result from a re-estimation of the speaker
independent weights based on a forced alignment (using the speaker
independent model) of the training data for that speaker. Note that
it doesn’t matter if some (or all) Gaussians are tied over different
(or all) states: when a Gaussian pdf is re-used in different states, it’s
weight in those states is not tied.

Then NMF is used to decompose the TNC × NR matrix V in
the product of a TNC × NL matrix W and a NL × NR matrix H .
Each column of W is one of the NL latent speakers, NL is a system
parameter. Each column of H contains the weights in the linear com-
bination of the latent speakers that approximates the corresponding
column in V . Note that only approximates of the reference speaker
models are found as NL is (normally) chosen smaller than NR so the
decomposition is not exact.

Now the idea is to model the test speaker as a linear combina-
tion of the latent speakers. The same idea is used in eigenvoice-
based adaptation of the means of the Gaussian pdfs [1], however the
restrictions on weights (being positive and summing up to 1) lead
to a constrained, convex optimization problem hence to different al-
gorithms to solve it. Based on the incoming data, the NL weights in
the linear combination should be estimated, then the adapted weights
for the test speaker are a weighted sum of the weights for the latent
speakers. As only few numbers have to be estimated for adaptation,
we may expect the system to be very fast. In the experiments in this
paper, for the weights the Maximum Likelihood (ML) estimate is
used, which is calculated iteratively.

The remainder of this section details the matrix decomposition
and the weight estimation.

2.2. Matrix decomposition
Depending on the chosen distance measure between V and its ap-
proximation eV = W · H , and on the chosen iterative algorithm to
minimize this distance, different NMF algorithms are possible. We
used three methods described in literature. In [4] and [5], the Euclid-
ian distance

d(V, eV ) =‖ V − eV ‖2=
TNCX
k=1

NRX
r=1

(V (k, r)− eV (k, r))2 (1)

is minimized, this is the Mean Square Error (MSE) criterion. We’ll
call the iterative algorithm in [4], based on multiplicative update for-
mula’s, the MSE1 algorithm, and the algorithm in [5], using additive
updates based on the steepest descent method with projected gradi-
ent, MSE2. In [4], also the generalized Kullback-Leibler divergence
is proposed as distance measure:

d(V, eV ) =
TNCX
k=1

NRX
r=1

V (k, r) log
V (k, r)eV (k, r)

− V (k, r) + eV (k, r) (2)

The NMF based on this divergence, using multiplicative updates,
will be called DIV. In [6] it is shown that using this divergence, NMF
is equivalent to PLSA (Probabilistic Latent Semantic Analysis).

2.3. Adaptation algorithm

Let cha = arg max
ha

P (O|ha) (3)

be the ML estimate for observation O of the NL weights ha that
define the adapted model va. The EM-algorithm then states that
Q(ha, cha) needs to be maximized iteratively. Corresponding to text
book formula’s for Baum-Welch, for weight re-estimation Q-function

Q(ha, cha) =

TX
t=1

TNCX
k=1

γ(k, t) log(va(k)) (4)

is to be maximized, with T the number of frames in the observation
and γ(k, t) the posterior probability for weight k at time t.

Given the relation between ha and va, equation 4 becomes

Q(ha, cha) =
TX

t=1

TNCX
k=1

γ(k, t) log
ˆ NLX

l=1

W (k, l)ha(l)
˜

(5)

with restriction
PNL

l=1 ha(l) = 1. Applying Lagrange multipliers
(with parameter α) to this restricted optimization problem, and after
partial derivation of this Q′ to the unknowns, we get8>><
>>:

∂Q′

∂ha(l)
= 0 = −α +

PT
t=1

PTNC
k=1

γ(k,t)W (k,l)
PNL

j=1
W (k,j)ha(j)

(l = 1, . . . , NL)
∂Q′

∂α
= 0 =

PNL
l=1 ha(l)− 1

(6)

which is a set of NL+1 non-linear equations for which no analytical
solution could be found. Therefore an iterative optimization scheme
was adopted, using initial values for ha(l)(0) equal to 1/NL, and
with a multiplicative update formula for the i-th iteration as follows:

ha(l)(i+1) =

TX
t=1

TNCX
k=1

γ(k, t)W (k, l)PNL
j=1 W (k, j)ha(j)

× ha(l)(i) (7)

(l = 1, . . . , NL)
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NL MSE1 MSE2 DIV NL MSE1 MSE2 DIV
2 5.10% 5.07% 5.12% 8 4.99% 5.17% 5.05%
3 5.07% 4.90% 4.82% 12 5.20% 5.04% 4.95%
4 5.05% 5.07% 5.07% 50 4.99% 5.00% 5.05%
6 4.97% 4.97% 4.92% 84 5.06% NA NA

Table 1. WER for different NMF algorithms and choices of NL

3. EXPERIMENTAL SETUP
The proposed adaptation method was investigated on the WSJ bench-
mark large vocabulary recognition task: 5k word closed vocabulary
(so no out-of-vocabulary words), standard bigram language model,
November 92 evaluation test set. The feature extraction is Mel-
spectrum based, including mean subtraction on the log spectrum, and
a discriminant analysis resulting in 39 features. The baseline model
doesn’t incorporate Vocal Tract Length Normalization (VTLN).

Training of the acoustic models is based on the standard SI-
84 WSJ0 database which contains about 15 hours of speech in to-
tal from 84 speakers. Speaker independent, cross word context and
position dependent acoustic models were generated with 1938 tied
HMM states, defined by an automatic phonetic decision tree for 45
phones. In total 17209 tied Gaussian pdfs (with diagonal covariance)
were estimated. We use a flexible tying system for the Gaussian pdfs,
with on average 88.7 components in the weighted sum for the tied
states, so TNC equals 171933.

To define the adaptation data, the data for each of the 8 test
speakers in the November 92 evaluation test set was split: the first 10
sentences (containing about 70 seconds per speaker) were selected
for adaptation, the remaining (about 30) sentences for the speaker,
which we will call the test set in the following, were used to evaluate
the adapted models. For the speaker independent (SI) models, the
Word Error Rate (WER) on this test set equals 5.71%.

The adaptation in the experiments in this paper is both super-
vised (the orthographic transcript of the adaptation data is known)
and off-line (first for each speaker the NL weights for the latent
speakers are estimated based on the adaptation data, then the speaker
adapted model is constructed and evaluated on the remaining sen-
tences for that speaker in the test data).

4. EXPERIMENTAL RESULTS
4.1. Baseline results
Table 1 presents the results when using all available adaptation data
for different choices of the number NL of latent speakers and for
the three investigated NMF algorithms (see section 2.2). The ta-
ble shows significant relative improvements of about 15%, while the
method is robust to both the choice of NL and NMF algorithm.

4.2. Adaptation speed
In order to assess the speed of adaptation, we did the following ex-
periment. Instead of using all the adaptation data for a speaker, seg-
ments of only 10 msec (1 frame) up to 1 second were used. In order
to get an indication of the variability on the WER results, we selected
20 different segments of adaptation data randomly for each segment
length (but assuring they contain speech, adaptation should not be
based on silence). The circles in figure 2 show the average WER
over the 20 measurements (for the 20 different segments) depending
on the amount of adaptation data. The triangles indicate the best and
worst result out of the 20 measurements. For segments of 50 msec
or longer, the system always improved the WER over the SI model.

We also see that the adaptation converges after about 0.2 sec-
onds, which is very fast. Even for 2 or 1 frames of adaptation data,
the result is never terribly bad: it can be anticipated that a low latency
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Fig. 2. WER versus amount of adaptation data

Model measure1 measure2
SI model 0.52 49.2
reference speakers 0.79 7.4

MSE1 DIV MSE1 DIV
2 latent speakers 0.62 0.62 33.1 33.4
8 latent speakers 0.68 0.66 19.0 21.6
20 latent speakers 0.74 0.70 12.5 16.5
test speakers, NL = 2 0.59 0.59 38.5 38.2
test speakers, NL = 8 0.61 0.61 34.5 32.1
test speakers, NL = 20 0.62 0.62 31.7 30.2

Table 2. Sparseness measures for different models

implementation of (e.g. frame by frame) weight adaptation will not
diverge from the optimal solution. It should be noted that in order
to use this very fast weight adaptation, unsupervised adaptation is
needed rather than the supervised version investigated in this paper.
This also means that the posterior probabilities for the components
of the tied state models cannot be calculated using the Baum-Welch
algorithm as explained in section 2.3, they should be estimated from
the hypotheses in the search directly.

5. FURTHER ANALYSES
In this section, we analyze sparseness of the models, and interpret
the latent speakers as clusters of speakers with similar properties.

5.1. Sparseness of the adapted weights
When speaker adaptation is obtained by adapting the weights, we ex-
pect both high weights (for components suitable for the test speaker)
and low weights in the adapted model. The more a weight vector
is sparse, the better the model is specialized for a specific situation.
We investigated two measures for the sparseness of a model v.

The first is the normalized ratio of the �1-norm over the �2-norm:
√

TNC− (
PTNC

k=1 |v(k)|)/
qPTNC

k=1 v(k)2
√

TNC− 1
(8)

as defined in [4]. This measure ranges from 0 for equal weights to 1
if only one weight differs from zero.

For the second measure, we sort weights in every state from
large to small, count the number of components needed to cover 90%
of the state’s density, and average this number over all states. The
lower this average, the sparser the model.

Table 2 presents both measures for the SI model, and (on av-
erage) for reference, latent and test speakers. We can see that the
sparseness of test speakers is closer to that of the SI model than to
that of reference speakers. Sparseness is lost in two steps: first due to
decomposition, especially for a low number of latent speakers, sec-
ond by combining latent speakers, especially for high NL. This is
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no VTLN with VTLN
male female male female

weight latent speaker 1 0.94 0.08 0.75 0.17
weight latent speaker 2 0.06 0.92 0.25 0.83

Table 3. Average latent speaker weight for gender classes

unfortunate as sparseness reflects the level of specialization towards
the current speaker. So we tried to increase sparseness in both steps,
as this may enhance the resulting model’s performance.

The sparseness of the latent speakers was increased using an
algorithm, described in [4], that allows to control the first sparse-
ness measure (equation 8) during decomposition. In case of 8 latent
speakers, sparseness measure 1 could be increased from 0.68 to 0.75
without a loss in WER, this results in a drop from 34.5 to 27.0 for
the second measure for the test speakers.

We tried to reduce the loss of sparseness due to combining of
latent speakers by putting weights for latent speakers that are below
a threshold to zero after every iteration in the multiplicative weight
update formula (see equation 7). Without loss in recognition perfor-
mance, the number of selected latent speakers (out of 8) could be
reduced to 2 on average, resulting in a drop from 34.5 to 25.9 for
measure 2 (test speakers).

Unfortunately neither method to increase sparseness (nor their
combination) improves recognition. Still there may be an advantage:
the decrease of the second measure indicates that we can generate
more compact (thus faster) speaker dependent models by removing
components for a state if their weight is below some threshold.

5.2. Interpretation of the latent speaker bases
In this section, we try to understand what speaker variation is mod-
eled by the latent speakers. One obvious origin of variation is the
gender of the speaker. Therefore we did an experiment on weight
adaptation for acoustic models in which VTLN is included in the fea-
ture extraction. This VTLN, described in [7], allows on-line adapta-
tion with no latency, so that it can be used when the proposed speaker
adaptation is implemented in a low latency, unsupervised setup. The
VTLN is supposed to remove (most of) the variation by gender. We
found a 5.18% WER for the baseline SI model, and a 4% relative
improvement to (on average for different NL) 5.00% for the weight
adapted models. This shows that part of the improvement found by
weight adaptation is due to adaptation to gender, but part of the im-
provement is complementary to VTLN.

This is also shown by investigating the weights in matrix H .
Each column in H contains the weights for the latent speakers in W
to approximate the reference speaker in the same column in V . If we
have a class of speakers in the training data, we can find the latent
speaker(s) by which this class is mainly modeled by averaging the
weights in H for all speakers in the class. If we do so for the classes
male and female in the SI-84 WSJ0 training database, using 2 latent
speakers, we find the average weights in table 3. We can see that,
without VTLN, the male and female speakers are modeled almost
perfectly with the first and second latent speaker respectively. With
VTLN in the feature extraction of the acoustic models, this effect is
smaller, but the gender is still clearly reflected in the latent speakers.

We also investigated to what extent the latent speakers reflect
speaker age and speaker dialect (as specified by the region where
the speaker went to primary school). Therefore we used the SI-284
WSJ1 training database, containing an additional 200 speakers, as
only for those speakers information about age and region is avail-
able. For this training database, using the same adaptation and test
data and the same recognition task as described before, the SI mod-

below 25 over 50 west east
weight latent speaker 1 0.67 0.19 0.52 0.67
weight latent speaker 2 0.33 0.81 0.48 0.33

Table 4. Average latent speaker weight for age and region classes

els (without VTLN) result in a 4.78% WER. This is improved by 9%
relative using the weight adaptation: a WER (on average for different
NL) of 4.40% is found. In the below experiment, we wanted to avoid
the effect of the gender (as this is dominant for the WSJ database), so
a matrix decomposition was done on the female speakers only (the
same effect was seen for the male speakers). The 2 classes for age
were below 25 years and above 50 years, the 2 classes for region
were east coast and west coast (in both cases excluding part of the
speakers). The results are given in table 4, the main conclusion is
that the weights are clearly more polarized towards age. An over-
all conclusion is that the weight adaptation is capable of modeling
things other than gender differences.

6. CONCLUSIONS AND FUTURE RESEARCH
In this paper, a new method was proposed for fast speaker adaptation
in large vocabulary recognition systems: the weights for the Gaus-
sians pdfs in the HMM states are adapted. By applying NMF, relative
improvements of about 15% could be achieved while the adaptation
converges within 0.2 seconds. However in acoustic models that in-
clude VTLN, the additional improvement of the weight adaptation
drops to about 4% relative.

As future research, we intend to make the speaker adaptation
more fine grained using phoneme dependent weighting of latent speak-
ers as a speaker may show properties of one latent speaker for some
phoneme cluster but properties of an other latent speaker for other
phonemes. It’s also interesting to know if the proposed method can
adapt to the environment when a multi-condition training database
is provided as in the Aurora-4 benchmark. Furthermore the com-
plementarity can be investigated of the proposed fast, pure speaker
adaptation technique, and the more common adaption methods that
work on the means of the Gaussians pdfs, especially in a framework
in which low latency, unsupervised adaptation is necessary.
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