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ABSTRACT
In recent research, we have proposed a high-accuracy bottom-up
detection-based paradigm for continuous phone speech recognition.
The key component of our system was a bank of articulatory detec-
tors each of which computes a score describing an activation level of
the specified speech phonetic features that the current frame exhibits.
In this work, we present our first attempt at designing a universal
phone recognizer using the detection-based approach. We show that
our technique is intrinsically language independent since reliable ar-
ticulatory detectors can be designed for diverse languages, and ro-
bust detection can be performed across languages. Moreover, a uni-
versal set of detectors is designed by sharing the training material
available for several diverse languages. We further demonstrate that
our approach makes it possible to decode new target languages by
neither retraining nor applying acoustic adaptation techniques. We
report phone recognition performance that compares favorably with
the best results known by the authors on the OGI Multi-language
Telephone Speech corpus.

Index Terms— Detectors, speech recognition, knowledge based
systems

1. INTRODUCTION

Over the past few years, several researchers have been challenged to
design a universal ASR system for multiple languages [1, 2, 3, 4, 5,
6]. The benefits associated with a universal ASR systems are sev-
eral, for example: 1) unseen target languages can be decoded, 2) the
number of model parameters can be reduced, and 3) training mate-
rial can be shared. The design of a unified speech recognizer is not
simple, as it requires defining a universal phonetic alphabet (UPA)
along with a mechanism to handle language-dependent variations.

The design of a UPA has been one of the topics explored at
the 2007 Jonh Hopkins University Summer Workshop hosted by
the Center for Language and Speech Processing. Yet, it is still far
from being completed. Thus, a unified phonetic inventory is usu-
ally generated for the languages at hand by using phoneme mapping
techniques either guided by acoustic-phonetic knowledge, for exam-
ple using the International Phonetic Alphabet (IPA) [7], or by data-
driven techniques which find acoustic similarities across sounds of
several languages, e.g., [1, 2, 3, 4, 5]. In [6], a bottom-up, two-level
forced alignment technique is used to generate consistent phonetic
labeling across several corpora.

It is a common practice to address the problem of decoding a
new target language as an acoustic modeling problem, e.g., [8, 4, 5].
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Language-independent acoustic modeling paradigms can be often
accomplished through: 1) bootstrapping [9, 10], and 2) language
adaptation, e.g., [10, 4]. The main idea of bootstrapping is to use
acoustic models trained for other languages as seed models for a
new target language; then language specific training data is used
for further refinement of the acoustic models. Language adaptation
techniques follow the idea underlining the speaker adaptation tech-
niques. Thus, acoustic models built for other languages are adapted
to the target language using small amounts of data. Finally, cross-
language experiments refer to experimental setups in which the tar-
get language material has not been used during the training phase,
e.g. [8, 5, 11]

In this paper, we describe our first attempt at designing a univer-
sal phone recognizer (UPR) which can decode a new target language
with neither adaptation nor retraining. We mainly focus on acoustic
modeling problems. We believe that the first step toward building a
UPR is to identify a common knowledge source (KS) that is funda-
mental and sharable across languages. We propose articulatory fea-
tures as KS since sounds described by the same set of these features
are similar across languages. The second step is to include the lin-
guistic knowledge carried by the articulatory features into the UPR
design process. In [10, 5], linguistic information has been incorpo-
rated while modeling phones in context, yet little improvement was
reported in cross-language experiments. The authors argued this was
due to the poor context overlap of different languages. In [12], we
incorporated articulatory information directly into acoustic model-
ing of context-independent phone models. We extracted articulatory
motivated features by a bank of detectors and used these features
as basic units for acoustic modeling. In the present work, we ex-
tend our technique to a multilingual scenario provided by the OGI
Multi-language Telephone Speech corpus [13]. We show that it is
possible to detect articulatory motivated features reliably for differ-
ent languages, and robustly across languages. Moreover, we show
that parameter reduction, with no loss in phone recognition perfor-
mance, can be achieved by using a universal bank of detectors. The
universal bank of articulatory detectors is built by sharing language
specific data. Finally, we give insights into the cross-language capa-
bility of the proposed approach by training on other languages and
decoding a never seen target language.

The topic of articulatory features in a multilingual context was
previously explored in [14]. Our work differs from that work in sev-
eral aspects. First, our system makes sole use of articulatory moti-
vated features. Second, we define manner and place of articulation
for consonants and vowels into a common linguistic space as sug-
gested by [15]. Finally, in cross-language experiments, we evaluate
our UPR system on a never seen target language.
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2. ARTICULATORY ATTRIBUTES

In this work, we assume that sounds described by the same set of
articulatory features share common acoustic properties across lan-
guages. Consequently, articulatory features can be considered as
more fundamental units than phonemes, since they are independent
of the underlying language. As pointed out in [15], a difficulty when
using manner and place of articulation for ASR application is that
vowels and consonants cannot be mapped into a common linguistic
space because place of articulation has been differently defined for
them. We follow [15], and we force vowels and diphthongs to be
organized into the place classes as the consonants. Also, we con-
sider all articulatory features as binary although some of them take
on non-binary discrete and continuous values. Furthermore, we in-
crease the set of manner and place categories to provide some redun-
dancy by some of the distinctive features defined by Chomsky and
Halle [16]. We use English as a rule model to define the mapping
from phonemes to distinctive features for all the other languages. In
this work, we use the terms attribute to refer to the set of articulatory
features used. Table 1 shows the set of attributes that we use in our
experiments along with the attribute-to-phone for English. Some of
the phone-to-attribute mappings may be arguable, but they are based
on common practice in speech recognition literature.

3. SYSTEM ARCHITECTURE

Figure 1 shows a block diagram of our detector-based UPR system
which consists of three main blocks: (1) a bank of speech event de-
tectors, (2) an event merger, and (3) an evidence verifier. More de-
tails about each block will be provided in the following sections. The
evidence verifier generates only the first best hypotheses.

3.1. Speech Event Detectors
The goal of each detector is to analyze the speech signal and pro-
duce a confidence score or a posterior probability that pertains to
some acoustic-phonetic attribute. We build each detector using 3
feed-forward ANNs with one hidden layer and 500 hidden nodes or-
ganized as in [12]. To estimate the ANN parameters , we separate
the training data into attribute present and attribute absent regions
for every articulatory event using the available phonetic transcrip-
tion. The softmax activation function is used in the output layer, and
the ANN produces the posterior probability that a speech event has
happened during the frame being processed. Energy trajectories in
mel-frequency bands which are organized in split-temoporal context
as in [17] are used as parametric representations of the speech signal.

3.2. Event Merger & Evidence Verifier
The event merger combines the event detectors’ outputs together
with different weights and delivers evidences at a phone level. The
event merger is implemented using a single feed-forward ANN with
one hidden layer and 800 hidden nodes. The softmax activation
function is used in the output layer.

The evidence verifier is just a decoding network which consists
of a set of context independent phone models layered in parallel and
with uniform entrance probability. Each phone is modeled by a 3-
state left-to-right hidden Markov model (HMM). The HMM state
likelihood is the phone posterior probability of the event merger. We
assume equal prior probabilities for all phones. The Viterbi algo-
rithm performed over the decoding network provides the decoded
sentence.

4. EXPERIMENTAL SETUP

All the experiments were conducted using the “stories” part of the
OGI Multi-language telephone speech corpus [13] which has pho-

Attribute Phoneme set

Vowel iy ih eh ey ae aa aw ay ah oy ow uh uw er

Fricative jh ch s sh z f th v dh hh

Nasal m n ng

Stop b d g p t k dx

Approximant w y l r er

Coronal d dx l n s t z

High ch ih iy jh sh uh uw y ey ow g k ng

Dental dh th

Glottal hh

Labial b f m p v w

Low aa ae aw ay oy ah eh

Mid ah eh ey ow

Retroflex er r

Velar g k ng

Anterior b d dh dx f l m n p s t th v z w

Back ay aa ah aw ow oy uh uw g k

Continuant aa ae ah aw ay dh eh er r ey l f ih iy oy ow

s sh th uh uw v w y z

Round aw ow uw uh v y oy r w

Tense aa ae aw ay ey iy ow oy uw ch s sh f th p t k hh

Voiced aa ae ah aw ay b d dh dx eh er ey g ih iy jh l m n ng

ow oy r uh uw v w y z

Silence pauses

Table 1. American-English phonemes list in terms of the manner
and place of the articulation.

Pr(fricative | O(t))

Pr(labial | O(t))

Pr(silence | O(t))

Evidence 
Verifier

pau aa 
ah s pau

Event 
Merger

Pr([aa])

Pr([hh])

Pr([pau])

Fricative
detector

Labial
detector

Silence
detector

s(t)

Fig. 1. Detector-based phone recognition system

netic transcription for six languages: English (ENG), German (GEM),
Hindi (HIN), Japanese (JAP), Mandarin (MAN), and Spanish (SPA).
For each language, we divided the database into three subsets, namely:
training, validation, and test. Table 2 shows the amount of data for
each of these subsets and the number of phones for each language.
It is worth to point out that the amount of the transcribed data is only
about 1 hour per language, which is significantly smaller than the
usual amount of data used to train ASR systems.

All the ANNs were built using the ICSI QuickNet neural net-
work software package1, and are trained using the classical back-
propagation algorithm with cross entropy error function. The Viterbi
algorithm used to generate the recognized phone sequence was im-
plemented using the HTK toolkit2.

4.1. Attribute Detection Experiments
4.1.1. Language Dependent Attribute Detection
Each detector is trained, validated, and tested using only language
specific data, as shown in Table 2. Moreover, each detector clas-
sifies a given speech frame as either attribute present or attribute

1ICSI quicknet software package, http://www.icsi.berkeley.edu/speech/qn.htm
2HTK toolkit, http://htk.eng.cam.ac.uk/
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Language ENG GER HIN JAP MAN SPA

Training [hours] 1.71 0.97 0.71 0.65 0.43 1.10

Validation [hours] 0.16 0.10 0.07 0.06 0.03 0.10

Test [hours] 0.42 0.24 0.17 0.15 0.11 0.26

Phoneme set 40 44 47 30 45 39

Table 2. The OGI Stories corpus in terms of amount of data and
number of phonemes used per each language.

Attribute ENG GER HIN JAP MAN SPA

back 77.12 67.71 85.69 87.53 88.08 76.24

cont. 81.01 73.76 79.41 88.82 89.49 88.43

fric. 75.83 83.06 73.48 75.74 80.02 71.88

glot. 37.57 38.07 31.84 33.33 42.06 41.19

approx. 62.08 44.87 45.73 40.74 48.40 55.39

high 70.88 65.82 73.75 71.13 75.52 61.34

labial 68.50 64.26 68.64 54.24 41.53 69.33

mid 71.48 74.58 77.82 83.41 81.33 80.88

nasal 68.87 77.70 67.69 69.30 62.86 74.48

retr. 61.81 46.22 47.12 46.02 52.86 46.75

tense 78.37 81.99 85.95 93.12 79.35 91.46

voiced 88.44 91.00 90.00 94.12 90.09 92.67

vowel 91.70 94.73 91.62 93.12 92.18 93.09

Table 3. Language-specific accuracy rates (%) for several speech
attributes.

absent. Table 3 shows the accuracy rates for each language and for
several attributes3. First, attribute accuracies are comparable across
languages and attributes. We achieve reliable attribute accuracy for
diverse languages, for example, the attribute accuracy is as high as
92% on the vowel class. For the fricative class, we achieve lower
accuracy as compared to common rates reported on wide-band, but
this is due mainly to 4 kHz cut-off frequency of telephone speech.
Despite the more available training data for English, there are cases
where other languages achieve a better attribute accuracy. For exam-
ple, vowels are better detected in Spanish than in English. The main
explanation is that the English vowel class is larger than the Spanish
one in terms of the number of phonemes. Finally, from a qualitative
point of view, our results are comparable with Stüker’s [14], but we
use telephone quality speech material, much less training data, and
we do not restrict training and evaluation to the middle part of the
speech event.

4.1.2. Cross-language and Universal Attribute Detection

The intent of this section is twofold: 1) we want to study whether ro-
bust detection can be carried out across languages, and 2) we want to
investigate the possibility of sharing data among different languages,
and thereby the possibility of designing a single bank of detectors for
several and diverse languages. To address the robustness issue, we
have tested all the detectors of a specific language on the data of
the other languages. Due to space constraints, we only report cross-
language experiments when Mandarin (MAN) is used as a test set.
Figure 2 show accuracy rates for each single detectors and language
on MAN data. The connected line in the figure shows the attribute
accuracy of Mandarin detectors on the MAN test data. Accuracy
rates for several speech attributes across languages are less reliable
than in the language-dependent case, yet the drop in performance is
not particularly severe. For example, the attribute accuracy for the

3The glottal attribute achieves the lowest accuracy rate among all of the

six languages.

Fig. 2. Cross-detection accuracy using Mandarin as test set. The

connected line shows the attribute accuracy of Mandarin detectors

on the Mandarin test set

Fig. 3. Universal detectors accuracy on Mandarin test set.

nasal class are comparable across all languages. Furthermore, for
some attributes, such as vowel, the data points are either on or above
the connected line. This indicates that the vowel detector trained
on a language other than Mandarin achieves an attribute accuracy
comparable with the corresponding Mandarin detector one. Thus,
detectors from different languages may be selected to achieve the
overall best performance for each attribute. To investigate the pos-
sibility of sharing data and parameters among different languages
while still achieving good attribute accuracies, we pool all the avail-
able training data from all the six languages and design a unified
bank of detectors (Universal). Figure 3 shows attribute accuracies
on Mandarin test sentences for several classes. We can observe that
by pooling the data, better attribute accuracies are achieved for sev-
eral attributes; for example, vowel, fricative, and mid.

4.2. Phone Recognition Experiments
4.2.1. Language Specific Phoneme Recognition Experiments

The language independent experiments discussed earlier reveal that
it should be possible to train a single bank of attribute detectors for
all the languages to build our detector-based phone recognizer. To
show this, we performed two sets of experiments. First, six individ-
ual recognizers were designed by training both the bank of detectors
and the evidence merger on language specific data (L-Specific). In
the second experiment, Universal bank of detectors was used, and
the evidence merger was still trained on language specific data (L-
Universal). Table 4 shows the performance, in terms of phone error
rate (PER), for the two configurations. A 0-gram language model is
used in all experiments. To the authors’ knowledge, the BUT sys-
tems [17] reports the best results on the same data sets. The BUT
performance is shown in the bottom row of the table.

When detectors are trained on language specific data, our sys-
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Language ENG GER HIN JAP MAN SPA

L-Specific 46.68 50.84 45.55 39.95 49.19 39.99

L-Universal 45.24 49.93 43.03 38.22 47.42 38.75

BUT 45.26 46.10 45.74 41.19 49.93 39.55

Table 4. PERs, in percentage (%), on the OGI Stories test sentences.
The last rows refers to BUT performance as reported in [17].

tem achieves comparable phone error rates (PERs) with the BUT
system for all the languages, but German. In [12], we have already
shown that a better performance can be achieved by increasing the
number of detectors. The second row of Table 4 indicates that addi-
tional improvements can be obtained by allowing the system to share
data and parameters as well. Data and model sharing is a natural ex-
tension of our detector-based system, for the intrinsic universality
of the articulatory features. Moreover, our L-Universal phone rec-
ognizer outperforms the BUT system for all the languages, except
for German. We think the German result comes from a possible
incorrect phoneme-to-attribute mapping. Indeed, we used English
attribute-to-phone mappings reported in Table 1 as a role model to
accomplish this mapping, rather then expert phonetician knowledge.
We believe that improvement on the German task can be obtained by
refinement of the aforementioned mapping.

4.2.2. Cross-language Phoneme Recognition Experiments

For cross-language experiments, we designed a Spanish recognizer
(DT-SYS) by training the detectors on all the available data, except
for the Japanese. We also built a “traditional” MFCC based context-
independent HMM phone recognizer, trained on Spanish material,
which serve as baseline. The MFCC features are a thirteen com-
ponent cepstrum vectors concatenated with the first and the second
difference cepstrum. Continuous diagonal mixture Gaussian obser-
vation density HMM models are used. Evaluation was performed on
never seen before Japanese test sentences. A unified universal phone
set was built for Spanish and Japanese using knowledge-based rules.
A 0-gram language model was used. Table 5 shows the PERs. Base-
line’s performance is given for different number of mixtures. We can
draw several conclusions from Table 5. First, the DT-SYS outper-
forms the baseline system in all cases. The improvement in base-
line’s performance achieves a plateau at thirty-two mixtures, and
consequently DT-SYS’s better performance is not due to a higher
system’s complexity. We can also observe that although lower PER
is achieved by the DT-SYS system when language specific material
is used Table 4, the performance drop is far less than what could be
expected when no language specific data is used. We believe that
better results can be obtained by refining the attribute accuracies, for
those accuracies are affected by the quality of the attribute-to-phone
mapping tables.

5. CONCLUSION

We have extended our detection-based paradigm [12] to a multi-
language scenario, and we have reported experiments for all lan-
guages both at an attribute and a phone level. We have shown that
our detection based system always achieves phone accuracy results
that are comparable or better than the, to the author’s knowledge,
best reported results OGI Multi-language Telephone Speech corpus.
We have also presented our preliminary attempts to design a univer-
sal phone recognizer which is a viable solution for processing speech
in all languages, even on those when no training data is available at
all. The fact that this system could be built on one set of languages
and tested on a never seen language is a clear indication of its poten-
tial.

System
DT-SYS baseline baseline baseline baseline

16-mix 32-mix 40-mix 44-mix

PER (in %) 47.5 54.2 52.9 52.5 52.4

Table 5. Cross-language performance on Japanese sentences, as
percentage of PER.
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