
IMPROVED PHONOTACTIC LANGUAGE IDENTIFICATION USING RANDOM FOREST
LANGUAGE MODELS

XiaoRui Wang1, ShiJin Wang1, JiaEn Liang1, Bo Xu1,2

1Digital Media Content Technology Research Center,
2National Lab of Pattern Recognition,

Institute of Automation, Chinese Academy of Sciences, Beijing, China, 100080

ABSTRACT
Recently a new language model, the random forest lan-

guage model (RFLM), has been proposed and shown encour-
aging results in speech recognition tasks. In this paper we
applied the RFLM to language identification tasks. We pro-
posed a shared backoff smoothing to deal with data sparseness
problem. Experiments were conducted on a subset of NIST
2003 language recognition evaluation data. The RFLM ob-
tained 15.7% relative error rate reduction comparing with the
standard trigram LM. The RFLM can be used as a counterpart
to n-gram LM and BTLM for system fusion. We also empir-
ically studied the relation between system performance and
the tree numbers in a RFLM.

Index Terms— Random Forest Language Models, Lan-
guage Identification, Decision Tree Language Models

1. INTRODUCTION

One of the most efficient approaches for language identifica-
tion (LID) is parallel phone recognition followed by language
modeling (PPRLM) [1]. This approach is based on the as-
sumption that phonotactic constraints contain enough infor-
mation to identify the languages. The phone decoders used
in PPRLM systems can be limited to a few languages and
the language models can be trained as long as unlabeled data
are available. This makes the PPRLM systems very effective
both in terms of decoding time and needed resources. The
PPRLM systems are widely used and perform consistently
well[1, 2, 3].
The most popular language model used in PPRLM sys-

tems is n-gram, which makes the following approximation:

P (wi|w1, w2, · · · , wi−1) ≈ P (wi|w
i−1
i−n+1) (1)

where w
j
i denotes the tokens wi· · ·wj , which is also called

history. The model order is often 2 or 3. The n-gram model
often suffers from data sparseness problem and may give un-
satisfied results. Smoothing techniques, such as model inter-
polation, are used to deal with this problem.

The work is supported by National High Technology Research & Devel-
opment program 863 of China under contract 2006AA010103.

In addition to smoothing techniques, there are also re-
searches focusing on data sharing or clustering. One of these
is the decision tree language model (DTLM). The DTLM
clusters similar histories into equivalence classes and each
history in a class shares the same distribution over the pre-
dicted tokens. In [4] a binary decision tree language model
(BTLM) was successfully applied to LID tasks and has shown
favorable results comparing to standard n-grams. It is also
used as an effective counterpart of n-gram LMs in fusion. One
problem of DTLMs is that the decision tree construction pro-
cedure also suffers from the data sparseness problem because
the tree splitting algorithms decide only on seen data. An-
other problem is that the node splitting algorithm is greedy
and may not lead to the optimal decision tree.
Recently a random forest language model (RFLM) [5] is

proposed and successfully used in speech recognition sys-
tems [5, 6]. The RFLM is a natural extension to DTLMs.
A RFLM is a collection of randomly constructed DTLMs and
the model probability is the average of the probabilities from
all the DTLMs. In this paper we applied RFLMs to PPRLM
systems. We also proposed a shared backoff smoothing al-
gorithm for RFLMs. Experiments were conducted on a sub-
set of NIST 2003 language recognition evaluation data. We
also compared the results of RFLMs with n-gram LMs and
BTLMs.
The rest of the paper is organized as follows. In section

2, we review the decision tree language models. In section
3, we describe the RFLM and our shared backoff smoothing
algorithm. In section 4 we give our experimental results and
analysis. Finally in section 5 we draw some conclusions.

2. DECISION TREE LANGUAGE MODELS

In decision tree language models (DTLM), n-grams are clas-
sified into equivalence classes by asking questions about to-
kens in a specific history position. Each node has a history
position i and two disjoint set L and R for asking questions.
For an n-gram, let wi denote its token at position i. If wi ∈ L,
it will proceed to the left child node. If wi ∈ R, it will pro-
ceed to the right child node. If wi are not in L and R, it can

42371-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



not proceed further.
Following [5] our decision tree training procedure con-

sists two stages: a growing stage and a pruning stage.

2.1. Growing a Decision Tree

The growing stage starts from a single node, the root node,
which is also the only leaf node. The root node contains all
n-grams of the training data. Leaf nodes are split into new
nodes recursively by a sequence of node splitting operations.
After splitting a node, n-grams in the node are also split into
new sub nodes. We select log-likelihood as our stop criterion
and grow the decision tree as deep as possible, until the log-
likelihood is maximized.
Considering to split a node N using two disjoint sets L

and R at history position i, the log-likelihood of the training
data will be

L(D|L,R) =
∑

w [(C(w,L) log C(w,L)
C(L) + C(w,R) log C(w,R)

C(R) ]

(2)
where C(w, ·) is the frequency count of token w following all
histories in (·) and C(·) is the corresponding total count. For
each history position i, we will choose two best subsets, L∗
and R∗, which give the maximum log-likelihood. We use a
greedy exchange algorithm to find L∗ and R∗ as follows:

1. Let L contains all tokens of position i in the n-grams of
current nodes. Let R be empty.

2. For each token wl in L, if move wl to R leads to in-
crease log-likelihood then add it to R and remove it
from L.

3. For each token wr in R, if move wr to L leads to in-
crease log-likelihood then add it to L and remove it
from R.

4. If any exchange was made in step 2 or step 3, return to
step 2.

We examine each position in the history and choose the
best one which can increase the log-likelihood the most. If
for all history positions the log-likelihood cannot be increased
by any L and R, we will mark the node as leaf node and
stop splitting from it. The whole growing procedure can be
summarized as follows:

1. LetN denote the leaf node under consideration for split-
ting. Initially N is the root node.

2. For each position i(i = 1, · · · , n − 1) in the history,
find two best subsets Li∗ and Ri∗ as described earlier.

3. Choose a best position i∗ from the n − 1 positions in
step 2 which increase the log-likelihood the most.

i∗ = arg max 1≤i≤n−1L(D|Li∗, Ri∗) (3)

Use i∗, Li∗ and Ri∗ to split N , mark N as internal
node and mark the new nodes as leaf nodes.

4. Repeat step 2 and 3 until no node splitting can increase
the log-likelihood.

2.2. Pruning a Decision Tree

The pruning stage aims to avoid over training and to get a
more robust tree structure. Heldout data is used to prune the
decision tree. We also use the log-likelihood as the pruning
criterion. If the log-likelihood on the heldout data cannot be
increased by growing a node into sub-trees, we will prune the
sub-trees rooted in that node.
The decision tree is fully built after pruning and all the leaf

nodes are used as equivalence classes to estimate token prob-
abilities. Note that the DTLM is different from the BTLM in
[4]. For a node in the BTLM, its question is associated with a
history position i and a token set S. If wi is in S the n-gram
will go to the left child, otherwise it will go to the right child.
So any n-gram can reach a leaf node in the BTLM. While in
the DTLM an n-gram may stop at an internal node. For such
n-grams we simply use their lower order probabilities.

3. RANDOM FOREST LANGUAGE MODELS

A random forest language model is a collection of random-
ized DTLMs, whose trees may be viewed as i.i.d. samples
from a subset of possible decision trees. From section 2.1 we
can see that for DTLMs the tree growing algorithm is greedy.
It is optimal locally and may not lead to the optimal decision
tree. For RFLMs, the decision tree growing algorithm is ran-
domized. A node splitting may not be locally optimal. The
decision trees in a RFLM randomly classify the training data
into different equivalence classes and may capture different
characteristics of the data. After combining all the trees in the
forest, the RFLM can get better results than greedily grown
DTLMs.

3.1. Randomizing a Decision Tree

In [5] a randomized decision tree growing algorithm was pro-
posed and we briefly review it here.
There are three ways to construct a randomized decision

tree. The first is to randomly select history positions. The
second is to randomly initialize the two subsets, L and R.
The third is to randomly sample the training data. We use the
first two methods because training data sampling makes the
data more sparse.
To randomly select a history position, for each of the n−1

positions we have a Bernoulli trial with a probability r for
success. The n − 1 trials are assumed to be independent of
each other. The positions that have successful trials are cho-
sen as a subset. For each position in the subset, we try to
split the node with randomly initialized sets L and R using
the greedy exchange algorithm described in section 2.1. We
then chose the position that has the best split.

4238



3.2. Shared Backoff

The training data in a leaf node may still sparse, because even
for large training data unseen contexts are also possible. Most
DTLMs use bottom-up recursive smoothing [4] to deal with
this problem. The probability can be calculated as

Pbu(w|N) = αP (w|N) + (1 − α)P (w|parent(N)) (4)

where Pbu(w|N) is the bottom-up smoothed probability in
node N , P (w|N) is the token w’s probability in node N , α
is a weight parameter and parent(N) is the parent node of
N . We found this method doesn’t work well for RFLMs.
Although it may help a single DTLM, the bottom-up recur-
sive smoothing can reduce the randomness of the trees in a
forest and makes all the DTLMs toward a same distribution.
Here we propose a shared backoff algorithm. For unseen data,
we combine a lower order model with a backoff weight. All
histories in a leaf node share the same backoff weight. Let
CN (w) be the total count of tokens w dropped in the node N

that
CN (w) =

∑
h∈N

C(hw) (5)

where C(hw) is the frequency count of the sequence hw. Let
S be the set of lower order histories that

S(N) = {h′|h ∈ N} (6)

where h′ is the history obtained by dropping the first token
in h. The probability after shared backoff smoothing can be
defined as follows:

Psbo(w|h) =

{
P (w|N) if CN (w) > 0

α(N)
∑

h′∈S(N) P (w|h′) if CN (w) = 0

where α(N) is the shared backoff weight and can be calcu-
lated to make the total probabilities sum to one.

α(N) =
1 −

∑
CN (w)>0 P (w|N)∑

wi∈V,CN (wi)=0

∑
h′∈S(N) P (wi|h′)

(7)

Because there are no model structure constraints for the
lower order model, it can be any LMs. In this paper we use
n-gram LM as the lower order model.

4. EXPERIMENTS

Our experiments were conducted on a subset of NIST 2003
language recognition evaluation data. Six languages were
chosen: Egyptian Arabic, American English, German, Ko-
rean, Mandarin Chinese and Spanish. We choose these six
languages because we don’t have the LDC CallFriend data.
We use the CallHome and LDC2003S03(Korean) data as our
training data instead. We don’t use Japanese evaluation data
since it is from the CallHome corpus[7]. We use NIST LID
Dev’96 and Eval’96 data sets as our development set and use
Eval’03 data as test set. We test on the 30s duration set.

4.1. System Description

Two phone recognizers trained on English and Mandarin sep-
arately were used in our experiments. The acoustic feature
vectors are 39-components comprised of 12 MFCC cepstrum
coefficients and the log energy, along with their first and sec-
ond order derivatives. The acoustic models are context in-
dependent phone models. Each phone model is a tied-state
HMM with Gaussian mixture observation densities and 16
Gaussians per state. The acoustic models are trained on our
training corpora described above. We use 44 phones for En-
glish and 39 phones for Mandarin. The text corpus used to
train language models are phone transcriptions of training data,
decoded by the two phone recognizers.
Outputs of the two recognizers were fused using Gaus-

sian backend classifiers. The raw language model scores were
stacked into feature vectors, which are transformed by ap-
plying linear discriminant analysis and used for training the
Gaussian classifiers. We estimate the Gaussian distribution
of the respective score vectors for every language, so we will
have a Gaussian distribution for each language in the system.
Our LID system framework is shown in figure 1.

Fig. 1. System framework

4.2. Language Identification Results

In the first experiment we first compared the LID results by
using n-gram LM, BTLM and RFLM and then fused these
three results using the backend.
For the baseline PPRLM system, smoothed back-off tri-

gram LMs were used. 6 language dependent trigram models
were trained on each phone transcript. For comparison we
also built BTLMs as described in [4]. Leaf adaptation and
bottom-up smoothing were also used and the model order is
3.
To build RFLMs, the training data transcripts were used to

growing the decision trees and Dev’96 and Eval’96 data was
used as heldout data to prune the trees. Peng Xu’s RFLM tool
[8] was used to train the model. For each language, 20 deci-
sion trees were randomly built to form a forest. After the for-
est was constructed, our shared backoff was used to smooth
the LM and use a language dependent bigram as the lower
order model. Since there are a number of trees, the recogni-
tion speed may become slow because we have to search every
tree to get a token’s probability. We pre-calculated all the tri-
gram’s probabilities from a RFLM before test and stored the

4239



probabilities in a table. When scoring only table lookup op-
erations were needed. The RFLM’s order is also set to 3. The
error rate of LID results are shown in table 1.

LM Error Rate(%) Improv.(%)

Trigram 10.94 -
BTLM 10.16 7.1
RFLM 9.22 15.7

fusion 8.75 20.0

Table 1. Language identification results using Trigram LM,
BTLM, RFLM and system fusion.

As we can see from table 1, the RFLM achieves consider-
able improvements. The BTLM obtained 7.1% improvements
comparing with the standard trigram LM and the RFLM ob-
tained 15.7% improvements. There are two basic reasons.
Firstly by data clustering the model’s complexity is reduced
and the model parameters can be estimated more robustly.
Secondly by randomly building the trees, each tree in the for-
est captured different characteristics of the training data and
combining all the trees will help to improve the performance.
We then fused the three results using the backend and got

an error rate of 8.75%, 20% relative improvements from the
baseline. This result shows that the RFLM can be used as a
counterpart of BTLMs and n-gram LMs in fusion.

4.3. Selecting Tree Numbers

In the second experiment we empirically studied how the tree
numbers can affect the RFLM’s performance. We used dif-
ferent tree numbers to train several RFLMs and test for each
number on our LID system. The numbers we test are 1, 2, 3,
4, 5, 10, 15, 20, 25 and 30. Because the tree growing algo-
rithm is randomized, to get reliable results we run 5 times for
each number and use the average error rate. The results are
shown in figure 2. Results of n-gram LM and BTLM were
also plot in the figure for comparison.

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 0  5  10  15  20  25  30

E
rr

or
 R

at
e

Tree Numbers

Trigram
BTLM
RFLM

Fig. 2. Error rate as a function of tree numbers

Figure 2 shows the dependency of error rate on the num-
ber of trees used in RFLM. We can see that when the tree
number is 3 the RFLM get similar results to the n-gram LM.
Using only 4 trees the RFLM outperforms the n-gram LM
and the BTLM. After that the error rate slightly goes down
when increasing the tree number. It shows that 20 or 25 are
adequate tree numbers.

5. CONCLUSIONS

In this paper we successfully applied the RFLM to language
identification tasks. A shared backoff smoothing technique
was proposed to deal with data sparseness problem. Experi-
ments showed encouraging results. The RFLM obtained 15.7%
relative error rate reduction comparing with a standard n-gram
baseline. The PPR-RFLM system can be used as a counter-
part to n-gram and BTLM systems for system fusion. We
empirically studied the relation between system performance
and the tree numbers in a RFLM and found that 20 or 25 are
adequate numbers.

6. REFERENCES

[1] M.A. Zissman, “Comparison of four approaches to auto-
matic language identification of telephone speech,” IEEE
Transanctions on Speech and Audio Processing, vol. 4(1),
pp. 31–44, January, 1996.

[2] P. Matjka, P. Schwarz, J. ernock, and P. Chytil, “Phono-
tactic language identification using high quality phoneme
recognition,” in Interspeech’2005, 2005, pp. 2237–2240.

[3] W. Shen, W. Campbell, T. Gleason, D. Reynolds, and
E. Singer, “Experiments with lattice-based pprlm lan-
guage identification,” in Speaker and Language Recogni-
tion Workshop, 2006., 2006.

[4] J. Navratil, “Recent advances in phonotactic language
recognition using binary-decision trees,” in Proceedings
of Interspeech-2006, 2006.

[5] P. Xu and F. Jelinek, “Random forests in language mod-
eling,” in Proceedings of EMNLP’2004, 2004.

[6] Y. Su, F. Jelinek, and S. Khudanpur, “Large-scale ran-
dom forest language models for speech recognition,” in
Proceedings of Interspeech-2007, 2007.

[7] A. F. Martin and M. A. Przybocki, “Nist 2003 language
recognition evaluation,” in Proceedings of Interspeech-
2003, 2003.

[8] URL, “http://www.clsp.jhu.edu/people/xp/,” .

4240


