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ABSTRACT

Current approaches to automatic spoken language identi ca-
tion (LID) assume the availability of a large corpus of man-
ually language-labeled speech samples for training statistical
classi ers. We investigate two methods of active learning to
signi cantly reduce the amount of labeled speech needed for
training LID systems. Starting with a small training set, an
automated method is used to select samples from a corpus
of unlabeled speech, which are then labeled and added to the
training pool — one selection method is based on a previously
known entropy criterion, and another on a novel likelihood-
ratio criterion. We demonstrate LID performance comparable
to a large training corpus using only a tenth of the training
data. A further 40% improvement in LID performance is ob-
tained using a third of the training data. Finally, we show that
our novel selection method is more robust to variance in the
unlabeled pool than the entropy based method.

Index Terms— speech processing, unsupervised learn-
ing, natural languages

1. INTRODUCTION

Training an Automatic Spoken Language Identi cation (LID)
system requires a large corpus of training data. Depending on
the complexity of the LID algorithm, training can be compu-
tationally intensive. Also, the cost for labeling a large database
covering many languages and dialects may be prohibitively
high and there will always be the choice as to which data de-
serve labels. One would expect that increasing the amount of
training data in general would improve LID accuracy. While
this seems to be true for the most part, previous work (includ-
ing ours, [1]) suggests that this may not always be the case.
We compared the accuracy of a LID system trained on the
full CallFriend train partition [2] to the accuracy of systems
trained on random subsets of the partition. These random sub-
sets were constructed by randomly selecting n speakers per
language, where n was chosen such that the subsets are either
40% or 80% of the full train partition. There was a signi cant
variance in the accuracy of the systems trained on the small
subsets. One of these systems even achieved higher accuracy
than the baseline, despite the fact that the system was trained

using only 40% of the data. This suggests that certain subsets
of the partition are more helpful for increasing LID accuracy
than others due to factors such as the similarity of speakers,
noise, etc. In this paper we develop an algorithm to discover
these types of subsets. Other authors have referred to this kind
of procedure as selective sampling [3]. A selective sampling
algorithm automatically determines which samples ought to
be used to train a classi er. Largely the literature suggests
that samples should be selected if they are determined to exist
in a region of uncertainty, where misclassi cation is possible.

Here we develop an experimental setup and a sample se-
lection algorithm for a three-language LID task. Training
samples are drawn from three languages in the CallFriend
train partition. We evaluate on test segments from the NIST
Language Recognition Evaluation (LRE) sets from 1996 and
2003. Using a simple iterative approach to select samples in
regions of uncertainty, we reduce the Equal Error Rate (EER)
by about 40% relative to the baseline sytem. We achieve this
error rate by using only a third of the training data. To match
the EER of the system trained on the full partition, we only
need a tenth of the training data.

The selective sampling algorithm can also be cast as an
instance of active learning. In this case one would start with a
small amount of labeled data, and proceed to direct an anno-
tator to the next set of segments that should be labeled. This
way the same amount of data would be labeled given a xed
amount of the annotator’s time, but the effect would be to have
a better corpus in the sense of LID performance. Using our
algorithm, we can reduce by 88.8% the number of samples
that need to be labeled to maintain the same error rate given
our current database. Cohn points out that gathering samples
may be relatively inexpensive, whereas assigning labels may
be costly [3]. If this is true for our LID task, then our ap-
proach can signi cantly reduce the cost of building a training
corpus, or it could provide the community with a more effec-
tive training corpus for a given cost.

2. SELECTIVE SAMPLING PROCEDURE

This section describes the procedure for selective sampling.
We use an iterative approach that is similar to the procedure
described in [4]. The algorithm begins with a large set of un-
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labeled data U , where each member of the set is a training
sample. To initialize the algorithm, we request labels for a
set L0, where L0 consists of randomly drawn samples from
U . We use L0 to train a model λ0, which seeds our iterative
algorithm. The algorithm uses a sorting criterion f to deter-
mine which samples u ∈ (U \ Li), i = 0, 1, . . . , are likely
to be misclassi ed by the current model λi. If we use an ap-
propriate f , then samples that lie in the region of uncertainty
should be at the head of our sorted list. These are the samples
for which we will request labels at the ith iteration. Table 1
shows the details of the algorithm.

1. De ne L0 to be a random subset of U . Request labels
for L0.

2. Set i = 0.

3. Train model λi using segments in Li.

4. Use λi to sort the samples in (U \ Li) according to
some criterion f .

5. De ne L
′

to be the top θ segments in the sorted list.
Request labels for L

′
.

6. Set Li+1 = Li ∪ L
′

7. Set i = i + 1.

8. If stopping criterion is satis ed, stop. Else go to Step 3.

Table 1. Selective Sampling Algorithm

At each iteration i, we measure the error rate of our cur-
rent model λi on a held-out evaluation set. The error-rate on
this held-out set could be used to de ne a stopping criterion.
Alternatively, we could simply de ne a maximum number of
iterations M , after which the algorithm exits.

3. CORPUS

Training data were drawn from the train partition of the Call-
Friend corpus [2]. For these experiments, we use only the
English, Mandarin, and Spanish conversations. We use this
subset of CallFriend, referred to here as CF-train-sm, in or-
der to manage the computation time for experiments and bet-
ter understand how the sample selection procedure extends to
a LID task.

The CallFriend corpus consists of unscripted 30 minute
conversations between two speakers. There are 40 conversa-
tions between 80 unique speakers for each language l, for a
total of 240 speakers. If we de ne each conversation side to
be a training sample, then we constrain our sample selection
criterion f to selecting particular speakers that reside near the
decision boundary rather than segments of speech. This ap-
proach would also limit us to only 240 total samples in U . We
overcome these constraints by creating many samples from a

single conversation side such that each sample (denoted x)
consists of a 15 second segment of contiguous speech frames.
Non-speech frames are rejected using a speech activity detec-
tor. This procedure increases the total number of samples in
U to 12851, which corresponds to 53.5 hours of speech. Table
2 shows the number of samples for each language.

Language Number of Segments
English 4404
Mandarin 4080
Spanish 4367

Total 12851

Table 2. CF-train-sm: A subset of CallFriend train partition

For evaluation, we use the English, Mandarin, and Span-
ish test segments from the 1996 and 2003 NIST Language
Recognition Evaluation (LRE) sets, referred to as eval96 and
eval03 respectively. We show results for 30 second test seg-
ments.

4. EXPERIMENTAL SETUP

4.1. Gaussian Mixture Model LID System

The baseline LID system, which is similar to the one de-
scribed in [5], uses Gaussian Mixture Models (GMM). The
GMM uses Shifted Delta Cepstral feature vectors, which are
a concatenation of k delta cepstrum vectors of length N , each
shifted by P frames. As in [5], the N, d, P, k parameters
7,1,3,7 were selected. There are 1024 Gaussian mixture com-
ponents with a diagonal covariancematrix. Language-speci c
models are adapted from a Universal BackgroundModel (UBM)
as described in [6]. For a given test segment x, the GMM for
language l produces a log posterior probability log Pr {l|x},
which is proportional to the log likelihood log Pr {x|l} of our
MAP adapted models under an assumption of a uniform prior
on the language. We use ratios of the log likelihoods for de-
coding and compute the EER according to the guidelines in
the NIST LRE.

4.2. Baseline Training Sets

The traditional GMM system building approach does not sub-
sample the training corpus; rather, every labeled example is
used to train the acoustic models. This is equivalent to re-
questing labels for every sample in U . To simulate different
sizes of U , we choose j segments from k speakers in CF-
train-sm to create a set Uj,k, such that Uj,k has j ∗ k total
labeled segments. Segments are drawn randomly from CF-
train-sm, with the constraint that Uj,k be balanced with re-
spect to gender, dialect, and language. This closely resembles
a realistic approach to build a LID training corpus of a xed-
size. For these experiments, we set j to 30 and vary k from
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12 to 240. For each choice of (j, k), we build 10 random sets
Uj,k to ensure reliability of our results. We de ne Uall to be
the set of every segment in CF-train-sm.

5. EXPERIMENTS

5.1. Baseline Results

The performance of the GMM LID system trained on the
baseline training sets Uj,k can be seen in Figure 1. EER for
eval96 is shown as a function of the size of Uj,k, where the

size of Uj,k is the proportion |Uj,k|
|Uall| . As expected, the EER

tends to decrease as the size of Uj,k grows. There is a signi -
cant variance in EER when the size of Uj,k is small, which is
consistent with the observation in [1]. This con rms the hy-
pothesis that for sets of a given size, some sets Uj,k are better
than others for training a LID system and further motivates
this work of nding a good subset for training. Our selective
sampling algorithm discovers one such set automatically for
a given initialization.
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Fig. 1. EER for random subsets of CallFriend.

5.2. Selective Sampling using Entropy

Next, we measure the error rate achieved using the selective
sampling algorithm described in Section 2. We seed the al-
gorithm with 10 different choices of L0, where L0 has 360
segments. L0 was chosen to have 360 segments so that the
initial model could be trained quickly with minimal annota-
tion and yet was large enough that the model would still pro-
duce somewhat reasonable LID results. At each iteration i we
request labels for θ = 360 additional segments, which corre-
sponds to 2.8% of Uall. For our stopping criterion, we de ne
a maximum number of iterations M = 12. The sorting cri-
terion f is Entropy. An entropy-based measure was shown

to be a suitable sorting criterion for a related effort in semi-
supervised learning [7]. We de ne our Entropy measure fH

to be:

fH (x) = −
∑

l

Pr {l | x} log Pr {l | x} (1)

Figure 2 shows the EER of the sample selection algorithm
using Entropy. The EER is plotted as a function of the size of
Li, where the size of Li is the proportion |Li|

|Uall| .
Our approach outperforms systems trained on the baseline

sets Uj,k for every size of Uj,k. After just three iterations of
the algorithm (which corresponds to 11.2% of Uall), we can
match the EER for the system trained on Uall. After eleven
iterations (33.6% of Uall), the mean EER reaches 2.02% for
eval96 and 1.19% for eval03. The system trained on Uall

only achieves 3.65% for eval96 and 3.0% for eval03. These
results show that our selective sampling approach is effective
for reducing EER for LID.
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Fig. 2. Selective Sampling results for eval96 and eval03.

5.3. Selection using relative likelihood

In this section, we study a likelihood-based criterion f for
sample selection. Recall that the goal of our criterion is to dis-
cover which samples lie in the region of uncertainty. Whereas
Entropy measures uncertainty amongst our language-speci c
GMM’s, our likelihood criterion measures likelihood relative
to the Universal Background Model (UBM). We de ne our
likelihood measure frL to be:

frL (x) = log Pr {x | UBM} − max
l

(log Pr {x | l}) (2)

Experiments from Section 5.2 were rerun using frL. Re-
sults from these experiments are shown in Figure 2. The EER
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for systems trained using frL consistently outperform the sys-
tems trained using random sets Uj,k. This suggests that frL

is also a suitable criterion for selective sampling. On average,
frL performs about as well as fH , though it is interesting to
note that at each iteration the two criteria request labels for
different samples. We also observe that for i < 7, there is
less variance in EER for frL, re ected by the smaller error
bars. This suggests that if we are attempting to minimize the
number of iterations M , we may get more predictable results
by using frL rather than fH .

6. SUMMARY AND DISCUSSION

We develop an iterative algorithm that automatically selects
which samples to use to train models. For a three-language
LID task, our sample selection scheme consistently achieves
lower error rates than a balanced random selection method.
We also show lower error rates than a system trained on the
full CF-train-sm partition. After eleven iterations of the algo-
rithm, we reduce the EER from 3.0% to 1.19% for the eval03
test set. This is accomplished using only 33.6% of the sam-
ples in CF-train-sm. In order to match the performance of
the system trained on the full partition, the sample selection
algorithm only requires 11.2% of the samples in CF-train-sm.

We show that two different sorting criteria - Entropy and
relative likelihood - are suitable for performing sample selec-
tion. With Entropy the procedure selects the most confusable
samples, which helps determine class boundaries. Under the
relative likelihood criterion, we select samples that are typical
under the UBM and yet do not t any of the language speci c
models, suggesting that these samples contain novel informa-
tion for whichever language they truly belong to, and hence
merit being labeled. Both criteria provide useful information
about potential training samples, and in the future we want to
consider how to compare the samples that each select.

The selective sampling algorithm described can be easily
explained in terms of active learning. If we assume that we
start with a small set of labeled data and a large set of unla-
beled data, we can use selective sampling to determine which
samples to label on an iterative basis. This differs from a tra-
ditional approach which would either label all the samples in
the large set or a random subset. Our selective sampling ap-
proach consistently outperforms both these techniques for a
three-language LID task. We reduced by 88.8% the number
of samples that need to be labeled in order to match the error
rate of the system trained on the full CF-train-sm partition.
Assuming that the cost to label examples is high, our selec-
tive sampling algorithm could be employed to signi cantly
reduce the cost of building training corpora for LID.

In the future, we would like to test the sample selection al-
gorithm using all the languages in the full CallFriend training
partition. We would like to extend this to large selections of
partially labeled data gathered from the web, or labels that in-
clude a varied source or microphone. It may also be of value

to investigate how to select which speakers to label when ini-
tializing the algorithm.
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