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ABSTRACT

This paper presents a new strategy for designing the parallel 
phone recognizers for spoken language recognition. Given a 
collection of parallel phone recognizers, we select a subset 
of phones from each phone recognizer for each target 
language to construct a target-oriented phone tokenizer 
(TOPT). As a result, the collection of target-oriented phone 
tokenizers is more effective than the original parallel phone 
recognizers. This approach improves system performance 
significantly without requesting for additional transcribed 
training samples. We validate the effectiveness of the 
proposed strategy within the framework of the parallel 
phone recognizer followed by vector space modeling 
backend, or PPR-VSM. We achieve equal-error-rate of 
2.21% and 3.65% on the 2003 and 2005 NIST LRE 
databases, respectively, for 30-second trials. 

Index Terms— Spoken language recognition, parallel 
phone tokenizer, target-oriented phone tokenizer 

1. INTRODUCTION 

Spoken language recognition is a process of determining the 
language spoken in an utterance, where an utterance can be 
seen as a sequence of sound units. The phonotactic features, 
representing the phonetic constraints in a language [1], can 
be extracted from an utterance using a phone tokenizer, also 
referred to as phone recognizer. Although the common 
sounds are shared considerably across spoken languages, 
the statistics of these sounds, such as phone n-gram, can 
differ considerably from one language to another. Since the 
introduction of parallel phone recognizers followed by 
language models (PPR-LM) [2], the study of phonotactic 
features [3, 4, 5, 6] has attracted much attention. In human 
perceptual experiments [7], listeners with a multilingual 
background often perform better than monolingual listeners 
in identifying unfamiliar languages. The parallel phone 
recognizers (PPR), which benefit from its multi-stream 
knowledge resources, provide an effective front-end 
mechanism that converts the input utterance into multiple 

phonetic token sequences. With the PPR as the front-end, 
both the phone n-gram language models [1] and the vector 
space modeling (VSM) [8] were adopted as the backend. In 
the PPR-VSM approach, for each of the phone sequences 
generated from PPR, a high-dimensional feature vector, also 
known as bag-of-sounds vector, of phone n-gram 
probability attributes is created. A composite vector is 
formed by stacking multiple bag-of-sounds vectors. Vector 
classification algorithms, such as support vector machine 
(SVM), can then be applied on the composite vector for 
classification.

In the PPR framework, the languages of parallel phone 
recognizers and target languages may not have to be the 
same languages. For example, an English phone recognizer 
may be regarded as a human listener with English 
background, who tries to extract the discriminative 
information from the spoken utterances of each target 
language from an English listener’s perspective. The 
discriminative information is expressed in an English phone 
sequence.

The same English phone recognizer is used for all the 
target languages in the current PPR practice, but we believe 
that it would be more effective if one can design the phone 
tokenizers that are target-oriented, for example, Arabic-
oriented English phone tokenizer, Mandarin-oriented 
English phone tokenizer, as Arabic and Mandarin each is 
believed to have its unique phonotactic features to a English 
listener. Note that not all the phones and their phonotactics 
in the target language may provide equally discriminative 
information to the listener, it is desirable that the phones in 
each of the target-oriented phone tokenizers (TOPTs) can be 
those extracted from the full phone set of a phone 
recognizer, and having highest discriminative ability in 
distinguishing the target language from other languages.

There are three major advantages to adopt the TOPT 
strategy. (i) the TOPT follows the intuition that each target 
language has its own unique, discriminative phonotactic  
information; (ii) more phone tokenizers can be made 
available without requesting for additional annotated speech 
data of new languages; (iii) with relatively smaller phone 
inventory in TOPTs, higher order n-gram phonotactic 
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statistics become feasible. In this paper, we derive TOPTs
from PPRs that replace the original PPRs within the PPR-
VSM framework for language recognition. We study the
strategy to select the TOPTs and their phone inventories
from a larger number of phone tokenizer candidates.

This paper is organized as follows. In Section 2, we
describe PPR-VSM language recognition system. In Section 
3, we study the TOPT design strategy for more efficient
language recognition with the VSM approach. In Section 4, 
we report experimental results. Finally we conclude in
Section 5.

2. PPR-VSM FRAMEWORK 

Fig. 1. PPR-VSM Language Recognition System

The PPR-VSM language recognition system is illustrated in 
Fig. 1. A collection of parallel phone recognizers (PPR) 
serve as voice tokenization front-end followed by vector
space modeling (VSM) backend. The language 
classification is carried out based on the composite vector
formed by stacking multiple bag-of-sounds vectors from the 
PPR [8]. 

Suppose that we have F phone recognizers with a 
phone inventory of 1 2{ , ,... }Fv v v v  and the number of 

phones in fv  is fn . An utterance is decoded by these 
phone recognizers into F independent sequences of phone
tokens. Each of these token sequences can be expressed by
a high dimensional phonotactic feature vector with the n-
gram probability attributes. The dimension of the feature
vector is equal to the total number of n-gram patterns. If 
unigram and bigram are the only concerns, we will have a 
vector of 2

f fn n  phonotactic features, denoted as fV  to
represent the utterance by the f-th phone recognizer. We
concatenate all the F phonotactic feature vectors into a large
composite vector

1[ ],..., ,...f F
tV V V V ,       (1) 

with a dimension of 
2( )f f fn nS ,       (2) 

By using a single composite feature vector, we can
effectively fuse the phonotactic features resulting from
multiple phone recognizers and make the classification
decision using a single decision hyperplane.

For each target language, a SVM is trained by using the
composite feature vectors in the target language as the
positive set and the composite feature vectors in all other
languages as the negative set. With L target languages, we 
project the high dimensional composite feature vectors
(with dimension of ) into a much lower dimension of [9]S

Q L                     (3) 
We formulate the language recognition as a hypothesis

test. For each target language, we build a language detector 
which consists of two Gaussian mixture models (GMMs)
{ , }m m . m is trained on the discriminative vectors of 
target language with dimension of Q , called positive model,

while m is trained on those vectors of its competing
languages, called negative model. We define the confidence
of a test sample O  belonging to language m  as the 
posterior odds in a hypothesis test under the Bayesian
interpretation. We have 0H , which hypothesizes that O  is 

language m , and 1H , which hypothesizes otherwise. The 
posterior odd is approximated by the likelihood ratio  that
is used for the final language recognition decision. 

( | )log
( | )

p O m
p O m

      (4) 

3. TOPT DESIGN STRATEGY 

The fundamental issue in spoken language recognition is to 
explore as many as possible discriminative cues for spoken
languages, and to effectively organize these language cues
in the classifier design. The success of PPR is attributed to
the informative statistics from multiple phone recognizers,
each of which covers certain phonotactic aspects in the 
feature space. Whereas more phone recognizers help boost
the performance [2], this also means that additional
annotated speech data are needed as we train the new phone 
recognizers.

Assuming that a collection of parallel phone
recognizers are already trained, we are interested in
reconfiguring the recognizers to increase the number of 
recognizers in a target-oriented manner. By doing so, we 
expect to improve the system performance without 
requesting for additional annotated speech data, nor 
additional acoustic modeling.

As we will only select a subset of phones from the 
original phone recognizer to serve in the TOPT, the smaller
phone inventory also allows for the use of higher order n-
gram statistics, such as trigram. It has been shown in our
previous work [8] that trigram phonotactic features provide
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a considerable improvement over the bigram features with
VSM backend.

3.1. Selection of Phones 

The phones in each of the TOPTs should be those with high
discriminative characteristics to distinguish the target
language from others. We adopt unigram phonotactic
features to construct a linear SVM hyperplane to separate a
target language from other languages. The phone selection
is conducted by examining the discriminative property of
each feature dimension.

With any of the F phone recognizers shown in Fig. 1, 
each of the training utterances in the L target languages can 
be converted into a phone sequence within an inventory of 

phones. The phonotactic feature vector of unigram

statistics
fv

1 2[ ,.. ], ,..,
fi vx x x xx , in  dimension, is used

to represent the utterance. A one-versus-rest linear SVM is 
built for each of the target languages, with the feature 
vectors in the target languages as the positive set and those
from all other languages as the negative set. The SVM is
binary classifier in the form of

fv

( ) ( )Tf x a x b , described
by a weight vector , an offset , and a kernel function

.
a b

(.)
SVM learning is posed as an optimization problem with

the goal of maximizing the margin, i.e., the distance 
between the separating hyperplane, , and the
nearest training vectors. Thus, a feature  with the weight

 indicates the contribution of the i

( ) 0Ta x b

ix

i
a th dimension in
constructing the hyperplane. The idea is to consider the
feature important if it significantly influences the width of
the margin of the resulting hyperplane. It was found that the
margin is inversely proportional to a , the length of . The 

features with higher

a

i
a  are more influential in determining

the width of the separation margin [10]. We choose those
phones with highest influences to the margin width of SVM
hyperplane to construct the TOPT for the specific target
language.

3.2. Selection of Phone Tokenizers

F parallel phone recognizers and L target languages result
in  phone tokenizer candidates. From practical point of
view, it is desired to select a subset of phone tokenizers that
are effective. We generate a binary code vector for each 
phone tokenizer candidate according to the selected phone 
set in Section 3.1. The tokenizers with the most distinctive
binary code vectors are selected for language recognition.

F L

For the lth phone tokenizer candidate based on the fth

phone recognizer, a binary code vector in the dimension of
fv  is generated as 

1 2[ , ,.., ,.., ], [0,1]
f

l l l l l l
i v ic c c c c c ,       (5) 

where 1l
ic if the ith phone of the fth phone recognizer is

included in the lth phone tokenizer candidate, and 0l
ic

otherwise.
The selection of phone tokenizers is to identify the most

distinguishing tokenizers and to avoid the duplication. For
each of the L binary code vectors related to the fth phone 
recognizer, the pair-wise Hamming distances to other L-1
vectors are calculated and summed as the discriminative
score. Those phone tokenizer candidates with highest
discriminative scores are selected to serve as the TOPT 
front-end, as the PPR front-end does in Fig. 1. 

4. EXPERIMENTS

4.1. Experiment Setup 

We conduct the experiments on the 30-second test segments
of the 2003 and 2005 NIST Language Recognition
Evaluation (LRE) tasks. The evaluation is carried out on 
recorded telephony speech in 12 languages in the 2003 LRE
and in 7 languages in the 2005 LRE. There are 80 test
segments in each of the 12 languages in the 2003 LRE, and 
3662 test segments in all the 7 languages in the 2005 LRE1.

The PPR front-end described in Section 2 includes
phone recognizers of seven languages, English, Korean,
Mandarin, Japanese, Hindi, Spanish and German, with 44,
37, 43, 32, 56, 36, and 52 phones respectively [6]. The
training sets of LDC CallFriend database are used to
construct and select the TOPTs, the development sets of
CallFriend are used to build the ensemble of SVMs for the
dimensionality reduction in (3), and the evaluation sets of
CallFriend are used to train the GMMs for the final 
decision.

4.2. Experiment Results

The first experiment is designed to study the suitable
number of phones in each of the TOPTs. If the number is
too small, the resulting phone tokenizer may not have
sufficient discriminative characteristics to separate the target
language from others. On the other hand, a large number of
phones will hinder the VSM backend from deploying 
multiple TOPTs with higher order n-gram phonotactic
features.

Without loss of generality, we conduct the experiments
with English phone recognizer and the corresponding

1 The test segments in India-accented English are removed due to 
insufficient training and development data in India English.
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TOPTs for L=12 target languages. The solid line in Fig. 2
shows the language recognition performance on the 2003
LRE 30-second task using TOPT-VSM approach, with
different numbers of phones in each of the TOPTs. The
bigram phonotactic features in all the 12 TOPTs are used to
generate the discriminative vectors in VSM backend. The 
dotted line indicates the 2003 LRE result using English
phone recognizer with bigram phonotactic features. We
choose top 20 phones in each TOPT in the next
experiments.
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Fig. 2. Language Recognition using 12 English TOPTs with 
different numbers of phones in each of the TOPTs

The second experiment compares the discriminative
capability between each of the 7 phone recognizers and the 
corresponding TOPTs. In Table 1, the second column shows 
the language recognition results on the 2003 NIST LRE 30-
second task using single phone recognizer with the bigram
phonotactic features. The third column shows the results of
corresponding 12 TOPTs, each having 20 phones. The
experiment results show that TOPT can provide better
accuracy due to the increasing phonotactic resolution. 

Table 1. Language recognition comparison between the phone 
recognizer and its TOPTs in VSM framework 

EER (%) Single Phone Recognizer 12 TOPTs 
English 8.02 6.59
Korean 10.46 7.70

Mandarin 8.31 6.62
Japanese 9.59 7.17

Hindi 11.66 9.75
Spanish 10.48 10.18
German 11.12 8.58

In the third experiment, the top 5 distinguishing TOPTs
are selected from each of the 7 phone recognizers based on
the selection strategy described in Section 3.2. The trigram
phonotactic features, which were too many to be included in
PPR-VSM system, are now easily deployed in the TOPT-
VSM system, with a smaller phone inventory. Table 2
shows the experiment results on the NIST 2003 and 2005 
LRE 30-second tasks. PPR-VSM denotes the PPR language
recognition system with 7 phone recognizers, while TOPT-

VSM denotes the TOPT language recognition system with 
7 5 35 TOPTs. More than 30% improvements have 
been achieved by replacing PPR with TOPT. 

Table 2. Comparison between PPR-VSM and TOPT-VSM
EER (%) NIST 2003 NIST 2005 

PPR-VSM 3.16 5.61
TOPT-VSM 2.21 3.65

5. DISCUSSIONS 

Target-oriented phone tokenizers method provides a
solution to recruit more phone tokenizers without requesting
for additional annotated speech data of new languages. 
Higher order phonotactic features can be deployed with the
smaller phone inventory in each of the tokenizers. The 
increasing phonotactic resolution leads to a big
improvement in the language recognition performance,
tested on the NIST 2003 and 2005 LRE tasks.

In future works, we would like to study the selection of
phone tokenizers and their phones from a universal phone 
recognizer, instead of parallel phone recognizers. The
universal phone recognizer is expected to contain a large
number of phones to represent the world’s languages. In this
way, we expect to derive TOPTs from a common set of
universal phones.
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