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ABSTRACT 

 
This paper presents a systematic framework for accurate 
estimation of vocal tract resonances (formants) using neither 
training data nor a phonetic transcription. In the proposed 
method, the speech signal is segmented in voiced and 
unvoiced parts and the resonance frequencies of the vocal 
tract are estimated by dynamic programming and further 
processed by using Kalman filtering/smoothing for each 
part. The performance of the proposed method is compared 
with three different methods which are baseline, WaveSurfer 
[10] and MSR [5]. The proposed method reduces the overall 
vocal tract resonances (for F1, F2 and F3) estimation error 
rate by 35%, 39.6% and 2.74% over the baseline, 
WaveSurfer and MSR methods respectively.  

Index Terms— formant tracking, vocal tract 
resonances, VTR, Kalman filtering/smoothing, voiced and 
unvoiced speech classification  
 

1. INTRODUCTION 
 
Vocal tract resonances (VTRs) contain very useful 
information about uttered speech and speaker. They are used 
in many speech applications (i.e. speech recognition, 
synthesis, accent classification etc).  Hence, reliable 
estimation of formants is important in order to improve 
performance of these applications. Recently, numerous 
methods are proposed to track formants that use Kalman 
filtering (KF) [5, 7, 11, 14], dynamic programming (DP) [1, 
2, 4], HMM [15], GMM [6] or combination of them [3, 13]. 
In this work, we combine Kalman filtering/smoothing and 
dynamic programming algorithm to track and estimate 
formant frequencies   accurately. Doing this combination, we 
consider formant tracking process as a kind of multi-target 
tracking process. In multi-target tracking applications, there 
are two important issues; data association (that is, which 
measurement belongs to which target), and position 
estimation. Using a similar idea, we consider formant 
candidates form LPC analysis stage as measurements from 
targets that correspond to formant frequencies. DP is 

considered as a data association stage, in which labeling of 
the formant candidates are handled. Estimation of formant 
location is done in KF stage. The proposed method is 
explained in Figure-2 in detail. From our point of view, 
without using the KF stage, the tracker has lack of main 
estimation stage. Figure-2 indicates that the formant tracking 
procedure applied to voiced and unvoiced parts of the 
speech are not the same. Indeed this is one of the factors that 
improve the performance of the system. The reason for this 
differentiation is the basic observation that for voiced 
regions formant candidates given by LPC is much more 
reliable compared to the unvoiced regions. The direct 
implication of this observation is the differentiation of 
parameters of trackers two cases. For the voiced speech, 
nominal formant frequencies (independent of phone) are 
used as additional information in DP part with relatively low 
importance. Furthermore, the formant measurements (output 
of the DP stage) contain “low noise” so the model generated 
for KF part has a small measurement noise covariance. For 
the unvoiced speech, the line connecting formants (similar to 
[2, 12, and 16]) of the proceeding and succeeding voiced 
regions are used as nominal formant frequencies which are 
called “estimated nominal VTRs”. They are quite effective 
in DP stage where LPC outputs are not reliable. KF 
parameters are selected according to a re-examination of the 
voicing decision. The measurement covariance parameter in 
KF is relatively high for unvoiced part due to less reliable 
LPC outputs  
 
 

2. BASELINE METHOD 
 
Before explaining the proposed method, we introduce our 
baseline system that can be seen in Figure-1. The baseline 
method is conventional formant tracking algorithm based on 
dynamic programming [1, 2, and 4]. The sub-blocks of the 
baseline system are explained in Section 3.3.  
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Figure-1 General scheme of baseline formant estimation 
procedure 

 
3. PROPOSED METHOD 

 
The general scheme of proposed VTR estimation procedure 
can be seen in Figure-2. The sub-blocks are explained as 
follows. 

 
Figure-2 General scheme of proposed VTR estimation 
procedure 
 
3.1. Unsupervised Speech Segmentation and Segment 
Based Classification: Voiced vs. Unvoiced 
 
In this work, we use Level building dynamic programming 
(LBDP) algorithm in order to segment speech signal into 
homogenous units [8]. The number of segments is L and is 
chosen as L 40.T= , where T (sec) is the total duration of the 
speech utterance. After segmentation phase, each segment is 
classified as voiced or unvoiced by using two energy 
thresholds, which are the average energy of the segment in 
dB and the energy ratio of the low frequency band (100-900 
Hz) to the high frequency band (3700-5000 Hz) in dB.  
 

3.2. Vocal tract Resonance Candidates Based on LPC  
 
After pre-emphasis stage, speech signal is divided into 
frames. For each frame, the frequencies and the bandwidths 
of formant candidates are calculated as 
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where, ck, Rk  and Bk  are  the kth  complex root of 
denominator polynomial of LPC filter (real roots are 
discarded), frequency of resonance candidates and its 
bandwidth respectively. Ts is the corresponding sampling 
frequency. In this work, the frame length and frame rate are 
40 and 6 msec respectively. Also, we choose sampling 
frequency to be 10 KHz and the LPC order to be 12.  
 
3.3. Estimation of Vocal Tract Resonances 
 
In this work, the estimation of the vocal tract resonances is 
handled by Kalman smoothing. For each resonance, we use 
one Kalman filter. The critical point in this method is to 
choose correct measurement (resonance) candidate to update 
Kalman filter. For this purpose it is necessary to associate 
the resonance candidates with formant tracks. There are 
some methods in the literature to solve this problem [7, 
11].In this work, we use dynamic programming (DP).  
 
3.3.1. VTR Candidate Classification (Selection) 
 
We use dynamic programming (DP) to find resonance 
candidates for VTR estimation phase. The states of the DP 
are all possible formant track/candidate associations. As an 
example, for 4 track and 6 candidates, the number of states 
is Ns=15. From the definition it is obvious that Ns may 
change for each frame. Incremental costs related with DP are 
DL(Local cost)  and DT(Transitional cost). Definition of 
them is similar to [1, 2, 4] and are given below. The local 
cost DL(.) is related to our knowledge about VTR without 
using any temporal context  and  it is defined as  
 

1

( )

nN
im i

L k im i n
ii

R R
D S m B

R
α η

=

−
= = + Γ  

Here, Sk denotes the state at frame k. N is the number of 
VTR, B is the bandwidth of the resonance which is weighted 
by  and is independent VTR index. R and Rn are the VTR 
candidate and nominal VTR values respectively. The 
normalized mean distance between the candidate and 
nominal VTR is weighted by i and .  
The transitional cost DT(.) which forces the resonance 
candidates to be continuous is defined as:  
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Where R(k) and R(k-1) are the resonance candidates at 
frame k and k-1. i is the weight which is VTR dependent. 

Hence, the total cost at kth frame for kS m = is 
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The backtracking procedure of DP gives the best resonance 
frequencies that means the VTR candidates are classified 
into VTR index and they are ready for final VTR estimation 
phase. On the contrary to, the baseline method, the  
parameter of DP is set for voiced and unvoiced parts 
differently.  
 
3.3.2. VTR Estimation 
 
In the VTR estimation phase Kalman smoothing is used. The 
state-space representation of the dynamic system model is 
given as follows;   

1 1   k k k k k kx Ax Gw and y Hx v− −= + = +  

The wk and vk are Gaussian random processes with known 

covariance Q and R, which are defined as [11,9] 

( ) ( )~ 0;   ~ 0;k kw N Q and v N R  
We choose the following model parameters and the state; 
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where, T is the time difference of consecutive frames which 
is constant. kF  is corresponding to the resonance frequency 

that is estimated and `
kF  is it’s time derivative. yk is the 

classified  resonance candidate (measurement). Standard 
Kalman filtering / smoothing techniques are applied for the 
state estimation [9]. 
 

4. EXPERIMENTAL RESULTS 
 

In this section we show experimental results and compare 
the performance of the proposed method with our baseline 
system, WaveSurfer [10] and MSR methods [5]. The 
experiments were carried out using hand labeled VTR 
database [5] which has been introduced recently. The 
database contains 516 utterances (sentences) and it is 
publicly available1. The experimental results of this work 
cover all 516 sentences of the database.  VTR estimation 
errors (in Hz) are measured by averaging absolute VTR 
differences between the estimated and hand labeled 
reference values over all frames, which is defined as follows.  
 

                                                 
1 In [5], 538 sentences are introduced; however, 516 of them are publicly 
available. 
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where, Ei is the estimation error of ith VTR, iF̂  and r
iF are 

the corresponding estimated and hand labeled reference 
VTR’s respectively and Nc is the total number of frames. 
The hand labeled database has 10 KHz sampling frequency. 
For error calculation, the hand labeled data is up-sampled so 
that it has same sampling rate as the proposed system. For a 
more detailed examination, we measure VTR estimation 
error for broad phonetic classes as well.  
The comparison of the proposed and the baseline system is 
given Table-1. 
 
Table-1 The error produced by the proposed and baseline 
methods for broad phonetic class 
 

Proposed Baseline 
Classes 

E1 E2 E3 E1 E2 E3 
Vowels 53 73 98 56 74 108 
Semivowels 65 84 139 71 105 176 
Nasals 93 194 156 108 236 178 
Fricatives 119 126 156 224 185 227 
Affricatives 144 150 167 243 197 186 
Stops 120 135 168 208 216 249 
AVERAGE 83 105 131 122 137 169 
 
The comparison of MSR and WaveSurfer is given in [5] 
(Although 538 sentences are used in [5], we use 516 of them 
since only 516 sentences are publicly available) and 
repeated here for over all evaluation of our method  
 
Table-2 The error produced by the MSR and WaveSurfer methods 
for broad phonetic classes (This table is taken from [5] for comparison 
purpose) 

MSR WaveSurfer 
Classes 

E1 E2 E3 E1 E2 E3 
Vowels 64 105 125 70 94 154 
Semivowels 83 122 154 89 126 222 
Nasals 67 120 112 96 229 239 
Fricatives 129 108 131 209 263 439 
Affricatives 141 129 149 292 407 390 
Stops 130 113 119 168 210 286 
 
The comparison of the proposed method with WaveSurfer 
and MSR’s method [5] can be seen in Table-1, Table-2, 
Figure-3, 4, 5. 
 

5. DISCUSSION AND CONCLUSIONS 
 
The experimental results show that the proposed method is 
significantly better than both the baseline system and 
WaveSufer. The method also has a significantly better 
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performance compared to MSR’s method [5] in vowel and 
semi-vowel phonetic classes where the VTRs are well-
defined. This result can be seen in Figure-4, Table-1 and 
Table-2. On the other hand, it is comparable to the MSR’s 
method for the remaining phonetic classes. The overall 
performance (for F1, F2 and F3) of the proposed method is 
slightly better than MSR’s method, which can be seen in 
Figure-5. 
 

 
Figure-3 The error produced by the proposed (P), MSR (M) and 
WaveSurfer (W) for all phonetic classes.  
(Note: MSR and WaveSurfer ‘s results are calculated using Table-2)   
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  Figure-4 The error produced by the proposed (P), MSR (M) for    
  vowels and semivowels phonetic classes 
 

 
Figure-5 The error produced by the proposed, baseline, MSR and  
WaveSurfer for overall average (F1, F2, F3)  
(Note: MSR and WaveSurfer ‘s results are calculated using Table-2)   
 
Examination of Table-1 shows that the performance of the 
proposed method for nasal phonetic class is relatively low. 

The reason for this is that the resonance candidates of 
proposed method are obtained using LPC analysis which 
chooses spectral peaks as VTRs. In hand labeled database, 
however, spectral valleys are chosen as VTRs for some nasal 
consonants as explained in [5]. We are currently studying on 
different types of VRT candidate extraction methods in 
order to further increase the performance of nasal and 
unvoiced speech parts.  
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