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ABSTRACT

A common technique to deploy linear prediction to non-

stationary signals is time segmentation and local analysis.

Variations of a process within such a segment cause inac-

curacies. In this paper, we model the temporal changes of

linear prediction coefficients (LPCs) as a Fourier series. We

obtain a compact description of the vocal tract model limited

by the predictor order and the maximum Doppler frequency.

Filter stability is guaranteed by all-pass filtering, deploying

the human ear’s insensitivity to absolute phase. The period-

icity constraint induced by the Fourier series is counteracted

by oversampling in the Doppler domain. With this approach,

the number of coefficients required for the vocal tract model-

ing is significantly reduced compared to a LPC system with

block-wise adaptation while exceeding its prediction gain.

As a by-product it is found that the Doppler frequency

of the vocal tract is in the order of 10 Hz. A generalization

of the algorithm to an auto-regressive moving average model

with time-correlated filter coefficients is straight forward.

Index Terms— Speech coding, Linear predictive coding,

Fourier series

1. INTRODUCTION

There has been a vast amount of research on how to remove

redundancy from speech signals allowing for efficient trans-

mission over digital communication channels. One approach

in speech coding is to model the speech generation process

by a (modulated) excitation source and a subsequent filter, ac-

cording to the airflow from the lungs passing the vocal chords

and the vocal tract, respectively. By this, a speech signal with

seemingly high entropy can be broken down into two low en-

tropy processes. The vocal tract filter is commonly modeled

as an inverse Linear Predictor (LP), wherefore this technique

is referred to as linear predictive coding.

Speech is a non-stationary process, meaning its properties

are changing over time, e.g., as the shape of the vocal tract is

changing. In classical linear predictive coding, the difficulty

of non-stationarity is addressed either by fixed-length win-

dowing of a speech signal, as it is assumed to be stationary

for relatively short periods of 20 to 400 ms, or the predic-

tor coefficients are sequentially adapted (but still locally opti-

mized) at each discrete time instance – to the expense of in-

crease in computational complexity [7]. In [6] the importance

of window size and placement when applying block-oriented

adaptation is pointed out, and an adaptive algorithm to mini-

mize the final cost (in bits) of the linear predictor description

is introduced. This global optimization implicates increased

processing delay, making it inappropriate for time-critical ap-

plications.

In this paper we address the problem of global optimiza-

tion by introducing a time-variant description of the linear

prediction coefficients (LPCs), allowing significantly larger

window sizes and thus eliminating the placement problem.

The time-variance of each LPC is modeled as a Fourier series,

yielding the compact representation of a so-called spreading

matrix1: Increasing the prediction filter order beyond an em-

pirical maximum value the additional prediction gain is small,

hence higher order predictor coefficients aq, q > Q, are disre-

garded. The Doppler frequencies, i.e., the number of Fourier

coefficients, are limited due to the finite-speed shape changes

of the vocal tract, e.g. by movement of tongue or jaws.

Example: Transition between two vowels
Figure 1 shows the magnitude of the spreading coefficients

for the German sound of the vowels ‘i’ (a) and ‘o’ (b) and

the transition ‘io’ between them (c), where q indexes the pre-

dictor coefficient and l the discrete Doppler frequency. For

constant sounds, in (a) and (b) the energy at non-zero fre-

quencies (l �= 0) is nearly zero as the vocal tract does not

change. The constant components (l = 0) of the spreading

matrix reflect the values of ‘normal’ LPCs. For (c) the vocal

tract is changing, causing non-zero values for l �= 0.

The remainder of this paper is structured as follows. Af-

ter a brief review of linear predictive coding in Section 2 we

will formally introduce the representation of LPCs as spread-

ing (matrix) coefficients and their calculation in Section 3,

discussing problems coming up with the Fourier series repre-

sentation and providing solutions. Suitable model parameters

are experimentally found in Section 4 before we conclude in

Section 5.

1This terminology originates from the field of wireless communications

where spreading matrices are used to represent time-variant channels [2].

41971-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



lq -10
0

10

0
5

10
0

0.5

1

(a) vowel ‘i’

lq -10
0

10

0
5

10
0

0.5

1

(b) vowel ‘o’

lq -10
0

10

0
5

10
0

0.5

1

(c) transition between ‘i’ and ‘o’

Fig. 1. Magnitude |Sq,l| of spreading coefficients for transi-

tion between vowels ‘i’ and ‘o’, with Doppler frequency index

l and predictor coefficient index q

2. LINEAR PREDICTIVE CODING

For linear predictive coding, the speech generation process

is approximated by a source-filter model, with the excitation

source being the airflow from the lungs, potentially modu-

lated by the vocal chords, and the filter being the vocal tract,

cf. Figure 2. For the latter, an all-pole filter

H(z) =
X(z)
D(z)

=
1

A(z)
, (1)

where

A(z) = 1 −
Q∑

q=1

aq · z−q (2)

is the inverse filter of H(z), and a sufficient number of poles

is a good approximation [3]. By minimizing the expectation

of the quadratic prediction error we can correctly estimate the

coefficients aq of A(z) [7], where Q is the prediction order.

Equation (1) is equivalently given in the time domain by

d(k) = x(k) −
Q∑

q=1

aq · x(k − q) . (3)

Hence for speech segments of finite length K the optimization

task becomes the minimization of the quadratic prediction er-

ror

K−1∑

k=0

|d(k)|2 =
K−1∑

k=0

∣∣∣∣∣x(k) −
Q∑

q=1

aq · x(k − q)

∣∣∣∣∣

2

→ min .

(4)

D(z) X(z)
H(z) = 1

A(z)

excitation vocal tract speech

Fig. 2. Source-filter model

This results in a set of equations called the Yule-Walker equa-

tions. These can be efficiently solved with the Levinson-

Durbin algorithm [5, 1], which moreover guarantees the re-

sulting filter to be stable.

As a quality measure for linear predictors we consider the

prediction gain . It is defined by the ratio

Gp =
σ2

x

σ2
d

(5)

of speech signal power and excitation power

σ2
x =

1
K

·
K−1∑

k=0

|x(k)|2 and σ2
d =

1
K

·
K−1∑

k=0

|d(k)|2 ,

respectively. It is a measure for the bit rate reduction achiev-

able by predictive coding and increases monotonically with

the prediction order.

3. DOPPLER-VARIANT REPRESENTATION OF
LINEAR PREDICTION COEFFICIENTS

In this section we introduce a new, time-variant representation

of LPCs. It allows to significantly increase the segment length

N � K, thus reducing the window placement problem [6]

without surrender of temporal adaptivity of the LPCs.

3.1. LPCs in the Doppler Domain

We model the temporal changes of the LPCs aq as a discrete

time Fourier series

aq(k) =
L∑

l=−L

Sq,l·ej 2πlk
N , q = 1, . . . , Q; k = 0, . . . , N−1.

(6)

The coefficients Sq,l will be referred to as Spreading Co-
efficients (SCs) with the filter tap index q and the discrete

Doppler frequency index l. Note that instead of summing over

a complete period l ∈ {0, . . . , N−1} according to the inverse

DFT, we restrict l in the range −L ≤ l ≤ L, thus truncat-

ing higher (positive and negative) Doppler frequencies. The

physical frequency corresponding to the l-th discrete Doppler

coefficient is thus given by

f
(l)
D = l · fs

N

where fs is the sampling frequency. Hence, the maximum

Doppler frequency contained in the model is f
(L)
D = L · fs

N .
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Replacing aq in Equation (3) by its time-variant representa-

tion in (6), the optimization task is now to find the values of

Sq,l which minimize the mean square prediction error

N−1∑

k=0

∣∣∣∣∣x(k) −
Q∑

q=1

x(k − q)
L∑

l=−L

Sq,l · ej 2πlk
N

∣∣∣∣∣

2

→ min . (7)

This can be done, e.g., by using the Least-Mean-Square

(LMS) or the Recursive Least-Squares algorithm. Of course,

as speech samples and therefore LPCs are real-valued, Sq,l =
S∗q,−l, where ∗ denotes the complex conjugate. Hence, the

number of real valued coefficients is cut in half when using

the real-valued notation of the Fourier series. However, the

complex valued notation will be preferred in the sequel as it is

more compact. To distinguish from classical linear prediction

(LP) analysis, in the following we will denote the proposed

approach as Spreading Coefficient (SC) analysis.

3.2. Stability Considerations

As opposed to frame-wise calculation of LPCs with the

Levinson-Durbin algorithm which guarantees stability of

the resulting filter [4], this does not hold for the LMS solution

of the proposed approach. These instabilities occur relatively

seldom and primarily during speech pauses or plosives. When

at a time instance k a filter realization A(z) with coefficients

from Equation (6) and with roots |z0| > 1 is detected, all-pass

filtering is applied. The inferred phase shift is disregarded as

human speech perception is generally insensitive to absolute

phase. The resulting minimum-phase filter is

Amin(z) = z−Q ·
∏

|z0|≤1

(z − z0) ·
∏

|z0|>1

(z − 1/z∗0) ,

where z0 are the roots of A(z).

3.3. Oversampling in the Frequency Domain

As discrete Doppler frequencies imply a periodic time signal

respectively a periodic sequence of LPCs, errors will raise at

the segment boundaries. As in [2], we address this problem by

virtually lengthening the period N to N · ν with the oversam-

pling factor ν ≥ 1, while retaining the optimization interval

to the first N samples. By this Equation (7) becomes

N−1∑

k=0

∣∣∣∣∣x(k) −
Q∑

q=1

x(k − q)
L∑

l=−L

Sq,l · ej 2πlk
Nν

∣∣∣∣∣

2

→ min

(note the ‘ν’ in the exponent). Hereby, the values of aq(N − 1)
and aq(0), q = 0, . . . , Q are no longer ‘glued’ together but

can follow their ‘true’ value while their difference is balanced

over the virtual interval from N to Nν−1. Note that Nν does

not even have to be an integer. By this virtual lengthening also

the spectral distance between the discrete frequencies in the
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Fig. 3. Speech segment of length N = 8000 (top) and values

of 1st predictor coefficient a1(k) obtained by LP analysis and

SC analysis without (ν = 1) and with oversampling (ν =
1.04) (bottom)

Fourier domain as well as the maximum Doppler frequency

f
(L)
D are reduced to

Δ(ν) =
fs

Nν
and fD,max = f

(L)
D = L · fs

Nν
, (8)

respectively, wherefore we refer to this procedure as oversam-
pling in the frequency domain. Note the difference to the more

common technique of zero-padding where the minimization

would take place on k = 0, . . . , Nν − 1 with x(k) = 0 for

N ≤ k < Nν.

Figure 3 shows a speech segment of 1 second length sam-

pled at fs = 8 kHz (top) and the 1st predictor coefficient

a1(k) obtained by classical LP analysis with frames of 20ms
as well as by SC analysis for oversampling factors ν = 1.0
and ν = 1.04 (bottom). We observe that the LPCs obtained

by SC analysis are smoothing the staircase-like LPCs from

LP analysis. For ν = 1, i.e., without oversampling, we note

an increased deviation from the classical LPCs at the segment

boundary due to the periodicity constraint. For ν = 1.04, the

difference between a1(N − 1) and a1(0) is balanced over the

virtually extended interval.

4. EXPERIMENTAL RESULTS

We will now experimentally investigate the performance of

the SC representation of LPCs in dependence of the param-

eters provided by the Fourier transform. For this evaluation

we use 100 seconds of speech from a standard test corpus

sampled at fs = 8 kHz and a predictor order Q = 10. For

classical linear prediction we choose 20 ms frames and ap-

ply a Hamming window before calculating the LPCs. The
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Fig. 4. Logarithmic prediction gain over ν for L = 10

predictor coefficients calculated from SCs are checked for the

minimal phase property and - if not fulfilled - all-pass filtering

according to Section 3.2 is applied.

First we evaluate the oversampling factor ν. For small

values, it is assumed to mostly affect the boundary regions of

the analyzed speech segments due to the balancing. However,

with increasing ν the frequency band of the model is shrink-

ing, cf. Equation (8). Hence we can expect Gp to have a

maximum, which is shown in Figure 4 for N = 8000. The

maximum gain of 0.02 dB for ν = 1.04 seems small, but this

is the average over the complete speech segment, while the

actual gain primarily origins from the boundary regions.

Next we consider the prediction gain Gp as a function of

fD,max and the segment length N . For speech segments of

length N = 8000 (one second), Figure 5 shows the predic-

tion gain over fD,max ≈ L. The horizontal line gives the

reference prediction gain with LP analysis. In fact, three SP

analysis curves are plotted in Figure 5 for N = 8000, 16000
and 32000, respectively, which, however, completely overlap.

We conclude that for a given target Gp the segment length N
can be freely chosen as long as L is set such that a certain

fD,max is reached.

The monotonically increasing SP analysis curve intersects

the LP reference line at fD,max = 10 Hz and is relatively flat

thereafter. Hence we conclude that our model represents the

temporal changing of the vocal tract well for this value. The

other way round, this means that the true maximum Doppler

frequency of the vocal tract is in the order of fD,max ≈ 10 Hz.

For our system setup, the number of real valued coeffi-

cients necessary to define the filter is 500 per second for LP

analysis compared to only

(2L + 1) · Q · fs

N
= 210/s

for SC analysis with fD,max = 10 Hz and N = 8000.

5. CONCLUSIONS

We introduce a time-variant representation for temporally

correlated linear predictor coefficients which allows the mod-

eling of non-stationary processes such as speech. We apply

maximum Doppler frequency fD,max/Hz
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Fig. 5. Prediction gain Gp over maximum Doppler frequency

oversampling to counteract the boundary constraint induced

by the Fourier series and use all-pass filtering to stabilize

estimated vocal tract filter coefficients. The prediction gain

of a comparable frame-wise LP system is exceeded when

the maximum Doppler frequency contained in the model is

10 Hz or above, while dramatically reducing the number of

coefficients required for the filter model. We hope that this

reduction transfers to quantized coefficients allowing better

data compression. Due to the inferred delay, however, the ap-

proach is not adequate for real-time application. We present

our idea as a starting point for this line of research. Further

investigations will show whether the performance transfers

to quantized spreading coefficients and will concentrate on

efficient optimization algorithms.
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