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ABSTRACT

We present a framework for speech recognition that accounts
for hidden articulatory information. We model the articulatory space
using a codebook of articulatory configurations geometrically de-
rived from EMA measurements available in the MOCHA database.
The articulatory parameter set we derive is in the form of Maeda
parameters. In turn, these parameters are used in a physiologically-
motivated articulatory speech synthesizer based on the model by
Sondhi and Schroeter. We use the distortion between the speech syn-
thesized from each of the articulatory configurations and the original
speech as features for recognition. We setup a segmented phoneme
recognition task on the MOCHA database using Gaussian mixture
models (GMMs). Improvements are achieved when combining the
probability scores generated using the distortion features with the
scores using acoustic features.

Index Terms— Articulatory Synthesis, Articulatory Recogni-
tion

1. INTRODUCTION

The speech signal is produced by the excitation of the vocal tract
whose configuration is largely governed by the positions and dynam-
ics of various articulators. Speech signals are therefore restricted to
the set of signals that can actually be produced by a valid config-
uration of the articulators – configurations that are naturally likely
to occur during speech and which cannot be eliminated by physi-
cal considerations. Furthermore, the actual sequence of sounds that
can be spoken is also restricted by the dynamics of the articulators,
which are governed by physical properties such as their mass and
inertia.

Although the relationship between the vocal tract (and thereby
between articulatory configurations) and the speech signal that is
produced is well established, this relationship is not explicitly uti-
lized in state-of-the-art speech recognition systems. Instead, the
speech signal is usually treated in an entirely phenomenological
manner: features that are derived for speech recognition are based
on measurements of the spectral and temporal characteristics of the
speech signal [1] without reference to the actual physical mecha-
nism that generates it. Even spectral estimation techniques such as
linear predictive coding, that purportedly model the vocal tract, do
not directly access the physics of the generating process – the re-
lationship between the parameters that are estimated and the vocal
tract is chiefly one of analogy.

In this paper we attempt to explicitly model the physics of the
vocal tract in deriving features for speech recognition. We model the
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space of valid articulatory configurations using a codebook of ar-
ticulatory parameters that is derived from electromagnetic articulo-
graph (EMA) measurements of the speech signal. We use the seven-
parameter description of the geometry of the vocal tract developed
by Maeda [2] to represent each of the articulatory configurations in
the codebook.

The set of codewords in the EMA codebook is assumed to be
representative of the complete set of valid articulatory configura-
tions for speech. In order to locate the configuration of incoming
speech within this space, we use an analysis-by-synthesis approach
whereby we generate speech from each of the codewords to best ap-
proximate the speech signal. In order to generate speech from the
articulatory configuration represented by a given codeword, we use
a synthesis technique that explicitly models the physics of the vocal
tract. Specifically, we use an articulatory synthesis model developed
by Sondhi and Schroeter [3] that uses physiological information of
the vocal tract and glottis. We use the spectral error between the syn-
thesized speech from any codeword and the incoming speech signal
as indicative of the distance of the articulatory configuration of the
signal from that of the codeword. The set of errors from all code-
words thus locates the speech signal within the articulatory space.
The vector of errors so obtained is then used as an additional fea-
ture for speech recognition that complements mel-frequency cepstral
coefficients (MFCCs) features, after necessary reductions in dimen-
sionality.

Analysis-by-synthesis approaches have previously been applied
to speech recognition. Blackburn [4] used an articulatory codebook
that mapped phones generated from N-best lists to articulatory posi-
tions. He linearly interpolated the articulatory trajectories to account
for coarticulation and used artificial neural networks (ANNs) to map
these trajectories into acoustic observations. Each hypothesis was
then rescored by comparing the synthesized features to the original
acoustic features. Other researchers have attempted to incorporate
information about vocal tract processes directly into statistical mod-
els that represent speech [5]. We believe that the work described here
represents the first attempt to capture explicitly the intrinsic physics
of the speech generation mechanism in the feature generation pro-
cess itself. Experiments in phoneme recognition reveal that signifi-
cant improvements can be obtained using our articulatory features.

In Section 2 we describe in detail the method we use to generate
a codebook representing valid articulatory configurations. In Section
3 we describe the analysis-by-synthesis mechanism we use to derive
articulatory features for use in speech recognition. In Section 4 we
describe a set of experiments that evaluates different forms of articu-
latory feature generation within the analysis-by-synthesis formalism.
Finally, in Section 5 we present our observations and conclusions.
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2. GENERATING AN ARTICULATORY CODEBOOK

As a first step in our approach, we need to derive a codebook of
articulatory configurations that spans the space of all valid configu-
rations for a given set of speakers. To do so, we utilize a set of actual
articulatory measurements. We map these measurements to a lower-
dimensional representation that we finally cluster into a codebook.
We describe each of these steps below.

2.1. Deriving Articulatory Measurements

We obtain a set of realistic articulatory configurations from an ac-
tual database of articulatory measurements. In our work we use the
MOCHA (MultiCHannel Articulatory) database [6] for this purpose.

The MOCHA database comprises a set of articulatory measure-
ments and corresponding audio recordings from a set of 40 speakers
reading 460 TIMIT utterances (British English). The articulatory
measurements include electromagnetic articulograph (EMA), elec-
troglottograph (EGG), and electropalatograph (EPG) measurements.
For the work reported in this paper, we only use the EMA measure-
ments. The EMA channels include (x, y) coordinates of nine sensors
directly attached to the lower and upper lips, lower and upper in-
cisors, tongue tip, tongue body, tongue dorsum, soft palate (velum),
and bridge nose. The EMA data is sampled at 500Hz and the corre-
sponding audio is sampled at 16kHz. For our work, we downsample
the EMA further to 100 Hz to match the frame rate with which the
audio channel is analyzed for recognition.

2.2. Maeda Parameters: Low-dimensional representation of
Articulatory Configurations

The Maeda [2] model uses seven parameters to describe the vocal
tract shape and compute the areas of the sections of the acoustic tube
used in speech generation. Using a factor analysis of 1000 frames
of cineradiographic and labiofilm data, Maeda derived a represen-
tation of the vocal tract profile as a sum of linear basis vectors or
components in a semipolar coordinate space spanning the midsagit-
tal plane of the vocal tract. Each of these components corresponds
to the parameters listed in Table 1.

In our work we use Maeda parameters as a seven-dimensional
representation of vocal tract configurations. EMA measurements
from the MOCHA data are hence converted to these seven-
dimensional vectors. To do so, we have developed a geometric map-
ping from the EMA measurements to Maeda parameters. For P1,
we compute the distance between the lower and upper incisors. For
P2, we use the horizontal distance between the tongue dorsum and
the upper incisor. For P3 we compute the angle between the line
joining the tongue tip and the tongue body, and the line joining the
tongue body and the tongue dorsum. For P4 we compute the vertical
distance between the upper incisor and the tongue tip. For P5 we
compute the distance between the upper and lower lips. For P6, we
compute the distance between the midpoint of the upper and lower
incisors and the line joining the upper and lower lips. Since we are
only using the EMA data, we set P7, which pertains to the larynx
height, to zero in the rest of the experiments. These parameters are
then normalized using their mean and variance, per utterance, to fall
within the [-3,+3] range as required by the Maeda model. We use
the energy in the audio file to set the starting and ending time of the
normalization. This way we exclude the regions where the EMA
sensors are off from the steady state position before and after the
subject is moving his/her articulators.

Table 1. Maeda Parameters.

Parameter Description Movement

P1 jaw position vertical
P2 tongue dorsum position forward or backward
P3 tongue dorsum shape roundedness
P4 tongue tip vertical
P5 lip height vertical
P6 lip protrusion horizontal
P7 larynx height vertical

2.3. Codebook Preparation

Once all measured articulatory configurations are converted to their
corresponding Maeda equivalents, we compute a codebook of artic-
ulatory parameters. Since P7 is not measured, we do not consider
it in this process. The EMA data, and hence the derived Maeda
parameters, are aligned with the audio data. To cancel out effects
of varying speech rate and phoneme length on the set of available
articulatory configurations, we resample the sequence of Maeda pa-
rameter vectors to obtain exactly five vectors from each phoneme.
To do so, the boundaries of all phonemes in the data must be known.
In our work these are obtained by training a speech recognizer (the
CMU Sphinx) with the audio component of the MOCHA database,
and forced-aligning the data with the trained recognizer to obtain
phoneme boundaries.

We sample each phoneme at five positions: the beginning, mid-
dle, end, between beginning and middle, and between middle and
end, and read the corresponding Maeda parameter vectors. We per-
form Kmeans over the set of parameter vectors obtained in this man-
ner. We designate the vector closest to the mean of each cluster as
codeword representing the cluster. This is done to guarantee that the
codeword is a legitimate articulatory configuration. The set of code-
words obtained in this manner is expected to span the space of valid
articulatory configurations.

3. DERIVING ARTICULATORY FEATURES

Once a codebook spanning the space of valid articulatory configu-
rations is obtained, it is used within an analysis-by-synthesis frame-
work for deriving a feature vector. In the subsections below we de-
scribe the synthesis technique employed and how it is used to derive
articulatory features.

3.1. Synthesis

The Maeda model converts each vector of articulatory configurations
to a vector of areas and lengths of the sections of the acoustic tube
describing the shape of the vocal tract. For effective analysis-by-
synthesis feature computation, we now need a mathematical model
that explicitly implements (or approximates) the physical equations
that describe the speech generation mechanism. In our work we then
apply the Sondhi and Schroeter [3] model1 which uses the chain ma-
trices approach to model the overall transfer function of the vocal
tract. The transfer function of each section is modeled by a matrix
whose coefficients depend on the area and length of the section and
on the losses parameters. The input (and output) of the matrix is the
pressure and volume velocity in the frequency domain. The transfer

1We use the implementations of the Maeda model and the Sondhi and
Schroeter model provided with the articulatory synthesis package developed
by Riegelsberger [7].
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Fig. 1. Articulatory features computation framework showing two
codewords only.

function resembles the wave equation at each section. The overall
transfer function is the product of the matrices.

The glottal source and interaction with the vocal tract is modeled
in the time domain using the two-mass model of vocal cords devel-
oped by Ishizaka and Flanagan [8]. The parameters of this model are
the lung pressure Ps, the glottal area A0, and the pitch factor Q. The
overall transfer function must be excited in order to generate speech.
In Section 4 we describe results obtained with a variety of different
excitation models.

The Sondhi and Schroeter model also allows for the nasal tract
coupling to the vocal tract by adjusting the velum opening area. In
this paper we assume that the velum is closed since the EMA mea-
surements provided by the sensor attached to the velum are missing
or corrupted for many speakers.

3.2. Computing a Feature Vector

For each incoming frame of speech, a corresponding frame of speech
is generated by the synthesis model for the articulatory configuration
defined by each codeword. Thus there are as many frames of speech
synthesized as there are codewords in the codebook. Each frame of
synthesized speech is compared to the incoming signal to obtain a
distortion value. We use the mel-cepstral distortion, as defined in
[9], between the incoming and synthesized speech as the distortion
metric in this paper.

The set of distortion values (one per codeword) represents the
distance of the incoming signal from each of the articulatory con-
figurations in the codebook, and effectively locates the signal in the
articulatory space. A vector formed of the distortion values thus
forms our basic articulatory feature vector. The process of creating
articulatory feature vectors is shown in Figure 1.

The articulatory feature vector obtained in this manner tends to
be high-dimensional – it has as many dimensions as codewords. Its
dimensionality is then reduced through linear discriminant analysis
(LDA). Other linear or non-linear dimensionality reduction mecha-
nisms may also be employed.

4. EXPERIMENTS AND RESULTS

We conducted a number of experiments to evaluate the usefulness
of the proposed articulatory feature extraction method for speech
recognition. In order to avoid obfuscating our results with the effect
of lexical and linguistic constraints that are inherent in a continu-
ous speech recognition system, we evaluate our features on a simple
phoneme classification task where the boundaries of phonemes are

assumed to be known. All classification experiments are conducted
using simple Gaussian mixture classifiers.

We choose as our data set the audio recordings from the
MOCHA database itself, since it permits us to run “oracle” experi-
ments where the exact articulatory configurations for any segment of
sound are known. Of the 40 speakers recorded in MOCHA, data for
only ten has been released. Of the ten, data for three has already been
checked for errors. We checked the data from the remaining seven
ourselves, and retained nine for our work: “faet0”, “falh0”, “ffes0”,
“fjmw0”, “fsew0”, “maps0”, “mjjn0”, “msak0”, and “ss2404”. Five
of the speakers are females and four are males. We checked the
EMA, the audio, and the corresponding transcript files for the nine
speakers. We discarded the utterances that had corrupted or missing
EMA channels, corrupted audio file, or wrong transcripts. We ended
up with 3659 utterances, each is around 2-4 secs long. We chose to
test on the female speaker “fsew0” and the male speaker “maps0”
and train on the rest. All experiments are speaker independent. The
amount of training utterances is 2750 and testing is 909. Only the
training speakers were used to compute the articulatory codebook.
The codebook consisted of 1024 codewords.

In all experiments, the audio signal was represented as 13-
dimensional MFCC vectors. We trained a mixture density with 64
Gaussians to represent each phoneme. Cepstral mean normalization
(CMN) was applied. No first or second order derivatives were used
as they were not found to be useful within the GMM framework.

4.1. An Oracle Experiment: Experiment 1

In this experiment we assume that the exact articulatory configu-
ration (expressed as a vector of Maeda parameters) for each frame
of speech is known, and simply obtain it directly from the EMA
measurement for the frame. The articulatory feature vector for any
frame of speech is obtained simply by computing the Mahalanobis
distance between the known Maeda parameter vector for the frame
and each of the 1024 codewords in the codebook. We reduce the di-
mensionality of the resultant 1024-dimensional vectors to 20 dimen-
sions using LDA. A mixture of 32 Gaussians is trained to represent
the distribution of these 20-dimensional vectors for each phoneme.

The phoneme Ĉ for any segment is estimated as:

Ĉ = argmaxCP (C)P (MFCC|C)αP (AF |C)(1−α)
(1)

where C represents an arbitrary phoneme, and MFCC and AF rep-
resent the set of acoustic and articulatory features for the segment re-
spectively. α is a positive number between 0 and 1 that indicates the
relative contributions of the two features to classification. We varied
the value of α between 0 and 1.0 in steps of 0.05, and chose the value
that resulted in the best classification in the form of phoneme error
rate (PER). The classification results and the optimal value of α are
shown in Table 2.

Table 2. PER using MFCC, AF based on oracle knowledge of artic-
ulatory configurations, and a combination of the two features.

Features fsew0 maps0 Both

MFCC 64.2% 68.1% 66.1%
AF 77.5% 85.8% 81.6%

Combination (α = 0.85) 55.2% 62.9% 59.0%

Relative Improvement 14.0% 7.7% 10.8%

We note that feature vectors obtained with oracle knowledge of
the vocal tract configuration can result in significant improvements
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in classification performance in combination with MFCCs, although
by themselves they are not very effective.

4.2. Synthesis with Fixed Excitation Parameters: Experiment 2

As explained in Sections 3.1 and 3.2, the articulatory feature vector
is computed as the vector of mel-cepstral distortions between the
speech signal and the signals generated by the Sondhi and Schroeter
model of the vocal tract. The latter, in turn, requires the vocal tract
to be excited. In this experiment we assume that the excitation to the
synthetic vocal tract is fixed; i.e. the synthesis is independent of the
incoming speech itself. This may be viewed as a worst-case scenario
for computing features by analysis-by-synthesis.

In this experiment we fixed the excitation parameters [Ps, A0, Q]
to the values of [7,0.05,0.9] for a voiced excitation and [7,0.15,0.7]
for an unvoiced one. Since the synthesis was independent of the in-
coming signal, two MFCC vectors were generated from each code-
word, one from each excitation. Both synthetic MFCCs were com-
pared to the MFCCs of the incoming speech. Since the energy level
in the synthesized speech is fixed, C(0) (zeroth cepstral term) was
not considered when computing the distortion. Since two distortion
values were obtained from each codeword, the final articulatory fea-
ture vector has 2048 dimensions, that were reduced to 20 dimensions
using LDA.

The rest of the details of the experiment, including the specifics
of dimensionality reduction, distributions estimated and likelihood
combination were identical to those in Section 4.1. The results of
this experiment are summarized in Table 3.

Table 3. PER with AF computed using two fixed excitation parame-
ters.

Features fsew0 maps0 Both

MFCC 64.2% 68.1% 66.1%
AF 65.9% 72.3% 69.1%

Combination (α = 0.25) 60.8% 65.5% 63.1%

Relative Improvement 5.3% 3.8% 4.5%

We note that even in this pathological case, the combination
of the articulatory features with MFCCs results in a significant im-
provement in classification, although it is much less than that ob-
tained with oracle knowledge.

4.3. Excitation Derived from Incoming Speech: Experiment 3

Here we actually attempt to mimic the incoming signal using the
various codewords, in order to better localize the incoming signal in
articulatory space. To do so, we derive the excitation signal parame-
ters [Ps,A0,Q] from the original signal. Ps (lung pressure) is linearly
proportional to the RMS energy. A0 is set based on voicing informa-
tion. Q is linearly proportional to the pitch value. These excitations
are then employed to synthesize signals from each of the 1024 artic-
ulatory configurations, which are used to derive a 1024-dimensional
articulatory feature vector. As before, the dimensionality of this vec-
tor is reduced to 20 prior to classification. C(0) was not considered
when computing the distortion. All other details of the classification
experiment remain the same as in Section 4.1. Table 4 summarizes
the results of this experiment.

We observe that in this “fair” test, the articulatory features are ef-
fective at improving classification, providing similar improvements
as were obtained with oracle knowledge. Not only are the articu-
latory features by themselves quite informative (as indicated by the

Table 4. PER with AF computed using excitation parameters de-
rived from the incoming speech.

Features fsew0 maps0 Both

MFCC 64.2% 68.1% 66.1%
AF 63.2% 73.1% 68.1%

Combination (α = 0.6) 56.9% 64.2% 60.5%
Relative Improvement 11.3% 5.7% 8.5%

PER obtained with them alone), they also appear to carry informa-
tion not contained in the MFCCs.

5. DISCUSSION

Our results indicate that the analysis-by-synthesis features we intro-
duce do carry information that is complimentary to that contained
in the MFCCs. The experiments we report use very a simple sta-
tistical model, aimed at highlighting the contributions of these fea-
tures. It is our hope that these improvements will also carry over
to fully-featured HMM-based large vocabulary systems as well. We
will explore this possibility as future work.

More importantly, the results indicate that articulatory configu-
rations are intrinsic to phoneme identities. The articulatory features
are, in effect, knowledge-based representations of the speech sig-
nal. Our experiments might thus indicate the need for greater em-
phasis on the combination of physiologically-motivated knowledge
based systems within the statistical framework of speech recogni-
tion. This argument is further supported by the fact that while such
approaches were not considered feasible in the past due to compu-
tational considerations, modern computers make the incorporation
of even highly computationally intensive physical models of synthe-
sis into the recognition process feasible. In addition, the advance-
ments in today’s machine learning paradigms can be exploited to
get better estimates of speech production model parameters, such as
the Maeda, and the Sondhi and Schroeter model parameters. Future
work will incorporate dynamic constraints on the articulatory con-
figurations to avoid considering all the codewords in the codebook
for each frame and reduce the computational complexity required.
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