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ABSTRACT
Symbolic representations of prosodic events have been shown
to be useful for spoken language applications such as speech
recognition. However, a major drawback with categorical
prosodymodels is their lack of scalability due to the dif culty
in annotating large corpora with prosodic tags for training. In
this paper, we present a novel, unsupervised adaptation tech-
nique for bootstrapping categorical prosodic languagemodels
(PLMs) from a small, annotated training set. Our experiments
indicate that the adaptation algorithm signi cantly improves
the quality and coverage of the PLM. On a test set derived
from the Boston University Radio News corpus, the adapted
PLM gave a relative improvement of 13.8% over the seed
PLM on the binary pitch accent detection task, while reducing
the OOV rate by 16.5% absolute.

Index Terms— prosody, pitch accent, prosodic language
model, unsupervised adaptation, lattice posterior

1. INTRODUCTION

Prosody refers to rhythm, intonation, and lexical stress, and is
expressed in speech via modulation of fundamental frequency
(F0), prominence patterns, and durational cues such as syl-
lable lengthening and speech rate. These cues occur at the
syllable, word, utterance and discourse level, and supplement
segment-level information provided by traditional acoustic-
phonetic features (e.g. MFCC). However, the high speaker-
and context-speci c variability exhibited by these acoustic
correlates of prosody in combination with their tenuous re-
lationship with the underlying linguistic structure of speech
has made it dif cult to integrate them with spoken language
systems in a systematic fashion.
Categorical representations of prosody offer a solution to

this problem by encoding prosodic events using a symbolic
alphabet. Tones and Break Indices (ToBI) [1] is one such an-
notation standard well-known in the community. Symbolic
transcription of prosodic events greatly reduces the variabil-
ity associated with acoustic-prosodic features and makes it

easier for automatic learning algorithms to derive relation-
ships between said events and other linguistic entities (e.g.
words, syntactic boundaries). Another advantage of some of
these schemes is that they are linguistically motivated, and
the prosodic transcription is correlated with linguistic entities
(e.g. ToBI pitch accent is closely related to syllable stress and
word prominence). Hasegawa-Johnson et al. [2] integrated
binary pitch accent labels from ToBI-style annotations within
an ASR framework to reduce the word error rate (WER) of the
system. Their system used joint models of prosodic and spec-
tral features in combinationwith a prosody-enriched language
model. More recently, we have used decoupled prosody mod-
els based on categorical representations to re-rank ASR N -
best lists [3] and also to enrich ASR lattices [4] for improved
recognition performance.
The major disadvantage of symbolic prosody is the cost

and effort involved in producing speech corpora with the req-
uisite annotations for learning the linguistic-prosodic models.
As a result, few speech corpora have been annotated in this
fashion, and those that exist are quite small in comparison to
generic speech databases for, say, ASR training. The problem
of sparsity, in particular, severely affects the lexical-prosodic
model due to its parameter-rich nature, causing a high out-
of-vocabulary (OOV) rate on test sets. This limits its use-
fulness in applications such as prosodic event detection and
speech recognition. On the other hand, previous work [5]
suggests that the PLM is extremely important for applications
that work with symbolic prosody, since it is the glue that binds
lexical items to prosodic symbols.
In this paper, we focus on alleviating the sparsity prob-

lem suffered by PLMs by proposing a novel algorithm for
unsupervised adaptation with a large, unlabeled corpus us-
ing a technique reminiscent of con dence-based adaptation
in ASR. Different segments of the adaptation set are weighted
according to the con dence level assigned by the seed mod-
els during automatic prosody labeling. This weighted data is
used to adapt the seed PLM. Our experiments indicate that
this algorithm results in an improved PLM with signi cantly
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reduced OOV rate. The remainder of this paper is organized
as follows: Section 2 contains a summary of the data cor-
pus used in our experiments. Section 3 describes the baseline
prosody labeling system, including the prosodic acoustic and
language models. In Section 4, we describe the adaptation
algorithm in detail. Section 5 summarizes the results of our
experiments. Section 6 concludes the paper with a brief dis-
cussion of our work and outlines future research possibilities.

2. DATA CORPUS

The Boston University Radio News Corpus (BU-RNC) [6]
consists of about 3 hours of read news broadcast speech from
6 speakers (3 male, 3 female) with ToBI-style pitch accent
and boundary tone annotations. The entire corpus consisted
of 29,573 words, which we split into a training set (14,719
words) and an evaluation set (14,854 words). After eliminat-
ing story repetitions from the evaluation set, its useful size
was reduced to 10,273 words, which we split into a held-out
development set (2,900 words) and a test set (7,373 words).
We chose a much smaller training set than usual to simulate
real-world situations where very little prosodically annotated
data is available, and also to test the ef cacy of our algorithm
in a data-starved scenario. As before, various types of pitch
accents annotated in the BU-RNC were collapsed to binary
labels that indicated presence or absence of pitch accents. A
total of 7,002 words (47.5%) in the training set carried any
type of pitch accent; similarly, 3,471 words (47.0%) in the
test set carried a pitch accent.
The adaptation dataset was culled from the WSJ1 (CSR-

II) [7] broadcast news speech recognition corpus and con-
sisted of approximately 22,400 utterances (52 hours, 407,000
words). This corpus consists of just the speech data and as-
sociated transcriptions, and does not provide symbolic tran-
scription of pitch accents or other prosodic events. The unsu-
pervised algorithms described in the following sections used
this corpus to adapt the seed model.

3. BASELINE SYSTEM

The prosodic event detector used in our experiments follows
our work in [5], where we proposed a maximum a-posteriori
(MAP) structure for the prosody recognizer. Thus, our sys-
tem chooses the sequence of binary pitch accent labels P

that maximizes their posterior probability given the acoustic-
prosodic features Ap and the word sequence W, according
to Eq. 1 below.

P
∗ = arg max

P

p(P|Ap,W) (1)

We simplify the above expression by rst applying Bayes’
rule and then by invoking the assumption that the acoustic-
prosodic features are conditionally independent of the lexical

Table 1. Acoustic-prosodic features
Feature Description
VOWEL DUR maxv∈wi

norm dur(v)
F0AVG UTT |avgF0(wi)− avgF0(utt)|
F0RANGE maxF0(wi)−minF0(wi)
F0AVG PAVG |avgF0(wi)− avgF0(wi−1)|
F0AVG NAVG |avgF0(wi)− avgF0(wi+1)|
F0MAX PMAX |maxF0(wi)−maxF0(wi−1)|
F0MAX NMAX |maxF0(wi)−maxF0(wi+1)|
ERMS AVG rmse(wi)/rmse(utt)
ERMS PRMS rmse(wi)/rmse(wi−1)
ERMS NRMS rmse(wi)/rmse(wi+1)

evidence, given the sequence of pitch accent labels. Eq. 1 can
then be rewritten as follows.

P
∗ = arg max

P

p(Ap,W|P)p(P)

≈ arg max
P

p(Ap|P)p(W,P) (2)

In Eq. 2, the RHS involves two factors - a) the prosodic
acoustic model p(Ap|P), which provides the likelihood of
the acoustic-prosodic features given the pitch accent label and
b) the PLM p(W,P), which relates the word sequence to the
pitch accent label sequence.

3.1. Prosodic acoustic model

The acoustic model is implemented as a 25-mixture Gaussian
Mixture Model (GMM) with diagonal covariance structure.
Since the pitch accent labels are binary (accent vs. no accent),
we trained two GMMs, one for each class, using the EM al-
gorithm. Word-level acoustic-prosodic features for training
these GMMs are obtained from ASR forced alignment at the
word- and phone-level, and are based on previous work on
prosody labeling. Table 1 lists a total of 10 features extracted
from the F0 track, energy, and vowel duration cues.

3.2. Prosodic language model

The PLM is a joint probability distribution over the word se-
quenceW and binary pitch accent tags P. We implemented
it by creating compound tokensW′ = (W,P) and training a
standard back-off trigram LM with these tokens. This model
is trained only on the annotated data from the BU-RNC and
will henceforth be referred to as the seed model pseed(W′).

3.3. Labeling algorithm

Our word-level pitch accent labeling implementation begins
with the construction of a word graph (“sausage”) for each
test utterance, as shown in Fig. 1. Accented and non-accented
variants of a word form the arcs between successive nodes in
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Fig. 1. Word graph with prosodic variants

the graph. Next, we evaluate likelihood scores for the two
prosodic variants using the acoustic model and embed these
within the corresponding arcs. The graph is then rescored
with the seed PLM. Finally, Eq. 2 is implemented using the
Viterbi algorithm to determine the best path through the re-
sulting lattice.

4. UNSUPERVISED ADAPTATION

We rst describe two na¨ve techniques for alleviating the high
OOV rate of the seed model and compare their performance to
that of the seed model as well as that of the proposed scheme.

• Majority Prediction (MajPred): This is a trivially
straightforward method in which we associate each
word of the adaptation set with the majority prosodic
category. In our case, each word is labeled as “not ac-
cented”, and this labeled corpus is then used to train a
PLM that is merged with the seed model to create an
adapted model pall0(W

′).

• LM Prediction (LMPred): In this method, we train
a factored back-off model pseed(P|W) from the an-
notated data. The factored structure provides better
smoothing for prosody label prediction as compared
to the joint model and is described in greater detail in
[5]. We use this model to predict prosody labels for the
adaptation set. This labeled corpus is then used to train
a PLM that is merged with the seed model to generate
the adapted model plmp(W

′).

Neither of these simplistic techniques utilizes the discrim-
inatory power provided by the acoustic evidence. Our pro-
posed adaptation algorithm makes use of both the acoustic
and lexical models of prosody to train a PLM that is superior
to these na¨ve techniques.

4.1. Proposed algorithm

We begin by setting up the pitch accent detection framework
for the unlabeled adaptation data using the acoustic model and
the seed PLM as described in Section 3.3. Due to the back-off
structure of the PLM, the lattices generated by rescoring the
word graph with the seed models no longer retain the original
sausage structure.
In the next step, we generate posterior probabilities for

each compound token W ′ = (W, P ). This is accomplished

Fig. 2. Obtaining n-gram counts from lattice chunks

by a two-step process: 1) link posteriors p(l|Ap) are com-
puted for each link l in the rescored lattice using a variant
of the forward-backward algorithm and 2) links correspond-
ing to the same compound token are collapsed to generate a
confusion network identical to the one that was originally cre-
ated for labeling, except that the arcs in the network now con-
tain compound token posterior probabilities computed from
the prosodic acoustic and language models. This technique
for generating posteriors and confusion networks is borrowed
from minimum word error rate decoding for ASR [8, 9].
The confusion networks with token posteriors are then

used to generate fractional (soft) counts for PLM n-gram es-
timation. Figure 2 illustrates this procedure for a sample frag-
ment of the network. The unigram count of a compound to-
ken is set to its posterior probability. For higher order terms
(bigrams and trigrams), the count of the term is set to the ge-
ometric mean of its constituent posteriors. Thus, terms with
high posterior probabilities, which correspond to regions in
which the seed models exhibit high con dence, are assigned
larger fractional counts and vice-versa. In this way, fractional
counts for all possible unigrams, bigrams and trigrams are ex-
tracted from the adaptation networks and are used to train a
PLM pfrac(W

′) from the adaptation data. This is merged
with the seed PLM to create the adapted model padapt(W

′).

5. EXPERIMENTS AND RESULTS

We split the BU-RNC data into training, development, and
testing partitions as described in Section 2. We extracted
acoustic-prosodic features using ASR forced alignment infor-
mation and trained the acoustic model as described in Sec-
tion 3.1. This model by itself performed with an error rate of
26.6% on the test set. We then trained the seed PLM from the
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Table 2. Pitch accent detection results (error rate)
Method Dev Test OOV
Chance 50.0% 47.0% -
Acoustic 26.4% 26.6% -
Seed PLM 31.0% 32.0% 21.3%
MajPred PLM 34.0% 34.5% 14.8%
LMPred PLM 29.7% 31.6% 12.8%
Adapted PLM 24.1% 27.6% 4.8%
Combined 18.9% 22.5% -

annotated data; this model gave an error rate of 32.0% on the
test data, signi cantly worse than the acoustic model due to
the high compound token OOV rate of 21.3%.
We experimented with the two na¨ve methods discussed

in Section 4 to generate adapted PLMs and evaluated their
performance. The majority prediction (MajPred) scheme per-
formed worse than the seed PLM with an error rate of 34.5%.
The token OOV rate was signi cantly reduced to 14.8% due
to inclusion of the adaptation data, but since the two prosodic
categories were more or less balanced, majority prediction re-
sulted in a high error rate when used to label the adaptation
set, causing poor estimates of the resulting PLM. The LMpre-
diction scheme (LMPred), with an error rate of 31.6% and a
token OOV rate of 12.8%, performed slightly better than the
seed model. The incremental gain provided by this scheme is
due to improved smoothing provided by the factored PLM.
We then implemented the baseline system of Section 3.3

in order to generate lattices for PLM adaptation. After con-
verting the rescored lattices to confusion networks, we ex-
tracted fractional unigram, bigram and trigram counts as de-
tailed in Section 4.1. We used the SRILM toolkit [10] to train
a PLM using these counts, which we merged with the seed
model to generate the adaptedmodel padapt(W

′). The weight
of the acoustic model in the initial rescoring step and the PLM
merge weight in the nal step were jointly optimized on the
development set. The error rate for pitch accent labeling with
this model was 27.6%, which represented a 4.4% absolute
(13.8% relative) reduction in error rate over the seed model.
The token OOV rate for this model was only 4.8%. Combin-
ing the acoustic model with the adapted PLM resulted in an
error rate of 22.5% on the test set. Table 2 summarizes the
results of various schemes for the pitch accent detection task.

6. DISCUSSION AND FUTUREWORK

We presented a novel unsupervised adaptation algorithm for
improving the quality of PLMs and evaluated its usefulness
on the pitch accent detection task. Our proposed scheme re-
sults in a 13.8% relative reduction in binary pitch accent label-
ing error rate and a 16.5% absolute reduction in token OOV
rate over the seed model.
One of the major stumbling blocks to using PLMs for

speech recognition as presented in the lattice-enrichment
framework [4] is the sparsity issue and the concomitant high
OOV rate. Our proposed adaptation algorithm signi cantly
reduces the compound token OOV rate and improves the qual-
ity of the PLM for prosodic event detection. In the future, we
would like to apply the same techniques to improve speech
recognition performance.
In this paper, we essentially used the discriminatory

power of acoustic evidence to adapt the seed lexical mod-
els. Another interesting experiment would be to determine
whether token posteriors derived from the confusion networks
can be used to adapt the acoustic model for improved perfor-
mance. This would complete the circle by using knowledge
from the seed PLM to adapt the acoustic model.
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