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ABSTRACT

We investigate several measures of voice quality (VQ) to
improve tone recognition in Mandarin Chinese. We nd that
band energy measures such as Spectral Balance (Sluijter and
van Heuven, 1996) work better than measures based on glottal
ow estimation and harmonic-formant differences. We also
determine a set of bands and measures that improve tone clas-
si cation accuracy on broadcast news speech to 64.1% from
60.4%when added to a traditional pitch-duration-intensity set
of features. Most improvement is for the neutral tone, for
which the F score increases from 0.345 to 0.619.

Index Terms— Speech recognition, Speech processing,
Feature extraction.

1. INTRODUCTION

Traditionally, acoustic features used to automatically recog-
nize Mandarin tones are based on pitch, duration, and over-
all intensity. We wish to know if other acoustic cues can of-
fer additional information, particularly cues that measure the
‘strength of a syllable’ in some sense.
Mandarin tones are typically de ned in terms of targets

specifying pitch height and contour: high level, mid rising,
low, and high falling. The neutral tone does not have a well-
de ned target, falling on unstressed syllables and being con-
textually determined. Neutral tone is thus very poorly char-
acterized and badly recognized by the typical pitch, intensity
and duration features.
It is reasonable to believe that strength-based cues can

help recognize neutral and possibly low tones, since syllables
with neutral tone cannot be lexically stressed, and because
low tones are sometimes produced with creaky voice [1].
There has been much investigation in the last ten years of

Voice Quality (VQ), or how far away a segment of speech is
from its modal form (an ‘average’ half-open half-closed set-
ting of the vocal folds). It has proved useful for various recog-
nition tasks, such as detecting phrase boundaries in English
[2] and Swedish, pitch accent in German [3] and prominence
in English [4].

2. TASK DESCRIPTION

We wish to know if VQ cues can aid tone recognition when
added to traditional acoustic cues. PID68 is a set of 68 fea-
tures based on pitch, overall intensity, and duration [5]. Du-
rational features included the length of the syllable and its
rhyme, and the number of voiced frames in them. Pitch fea-
tures included a 6-point contour and its difference, gradients
of various parts of the contour, and the mean, maximum, stan-
dard deviation, etc, of pitch during the syllable. Pitch features
adjusted by the mean pitch of the previous syllable were also
used. Likewise with intensity, except that the adjustments
used were by the mean intensity of both neighbor syllables.
In each of our experiments, we xed a dataset of Man-

darin broadcast news speech and a classi cation algorithm,
and computed classi cation performance when using PID68,
and when using PID68 plus a d-dimensional vector of VQ
features, where d varied with the set of features considered.
Datasets were subsets of stories from the Voice of Amer-

ica Mandarin TDT 2 corpus [6] that had been automatically
segmented, force aligned, and manually spot-checked [7].
For classi cation we used a 1-versus-1 ensemble [8] of

Regularized Least Squares linear binary classi ers [9] with
Platt-scaled outputs [10] that produces probability estimates
as predictions1. For each syllable, the classi er estimated the
probability that it had each of the 5 tones.
In each binary classi cation subproblem, we have N D-

dimensional training examples x1, . . . , xN ∈ R
D with ±1

labels y1, . . . , yn ∈ {−1, 1} and nd weights b ∈ R, w ∈

R
D such that if zi = wT xi + b, the sum

∑N
n=1

(yi − zi)
2 +

λ(wT w + b2) is minimized. We used λ = 1 for all cases.

3. MEASURES OF VOICE QUALITY CONSIDERED

As there is no standard measure for VQ, we tried several.
Each feature for a syllable was Z-normalized by its distri-
bution over all syllables in the same news story; speakers
changed across stories, not within.

1The C++ scalable classi cation package we implemented for our ex-
periments is available at http://people.cs.uchicago.edu/∼dinoj/na a .
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3.1. Glottal Flow Estimation

Some VQ measures are based on estimating glottal ow dur-
ing speech using idealized templates (of varying shape) of
glottal air ow. With a triangular template, OQa is the frac-
tion of the period that is spent opening the glottis, and ClQ is
the fraction of the period that is spent closing the glottis. Both
are lower when the voice quality is higher [11]. With a rect-
angular template, the fraction of glottal closing time is called
the Normalized Amplitude Quotient (NAQ) [12]. Other re-
lated measures we tried were the Open Quotient measures
OQ1 and OQ2 [13], the Quasi-Open QuotientQOQ, and the
Speed Quotients SQ1 and SQ2.
For each measure, values every 5ms were found as fol-

lows: we calculated the value of each measure in overlapping
segments of 32 ms and 64 ms (also stepped every 5ms) using
Aparat [14] and then de ned the value of a measure at time t
to be the mean of its values in all segments containing t.

3.2. Harmonic-Formant Differences

Other common measures of voice quality come from careful
analysis of the harmonics and formants of the speech signal,
such as the differences H1−H2 and H1−A3 [2, 15]. H1 is
the amplitude of the rst harmonic of a segment of speech,
while H2 is the amplitude of the second harmonic. A3 is the
amplitude of the largest harmonic in the third formant.
We used the method and Praat script of [15] to calculate

harmonics and formants.

3.3. Spectral Summary Measures

The Spectral Center of Gravity (SCG)was proposed in [16]
as a summary measure for Spectral Balance, and was shown
there to correlate with lexical stress in American English.
It is higher when there is more energy at higher frequen-
cies. If |S(f)| is the energy at frequency f , then the SCG is
(
∫

f |S(f)|df)/(
∫
|S(f)|df).

The Spectral Tilt of a short segment of speech is de ned
to be the gradient of the line of best t to its spectrum between
500 and 4000Hz.

3.4. Band Energy

Band Energy is the energy in each of a collection of fre-
quency bands. This is much easier to calculate than most of
the measures previously calculated as no pitch calculation or
inverse ltering is required2. The energy was measured using
the multi-taper spectrogram [17] by considering overlapping
20ms frames of speech stepped every 5ms.
One of the earliest band energy measures suggested for

an intonational recognition task was Spectral Balance [18],

2Preliminary experiments where we used inverse ltering produced worse
results; nding a good inverse lter is dif cult.

which uses the bands 0-500, 500-1000, 1000-2000 and 2000-
4000 Hz. A similar measure, which we denote as vSN Bal-
ance, using bands 100-300, 300-800, 800-2500, 2500-3500
and 3500-8000 Hz, helps to predict pitch accent and stress
in American English [19]. We also used these other sets of
bands:
EQ31 has the thirty-one overlapping bands of 250 Hz

bandwidth between 0 and 4000Hz: 0-250 Hz, 125-375, 250-
500,. . . , 3750-4000.
EQ15 has fteen overlapping bands of 500 Hz bandwidth

between 0 and 4000Hz : 0-500, 250-750, 500-1000, . . . ,
3250-3750, 3500-4000.
EQ8 has a subset of bands of EQ15 : 0-500, 500-1000,

1000-1500, . . . , 3500-4000.

4. EXPERIMENTS I : VQ MEASURES

The Harmonic-Formant and Glottal Flow features took a par-
ticularly long time to compute. Therefore, the experiments
reported here only used twenty stories with 1383 syllables.
To make up for this, we performed four-fold cross-validation
with ve stories per fold. We computed performance with
varying feature sets; each set consisted of PID68 plus a d-
dimensional VQ feature.
For features other than the band energy features, if a syl-

lable had � frames with values x1, . . . , x� then the value of
the feature for the syllable is a d=4-dimensional vector con-
sisting of the mean and standard deviation of the � values, the
midpoint x��/2�, and the gradient of the line of best t.
For band energy features with d bands, we took the value

of such a feature for a syllable to be a vector with the mean
(over all frames in the syllable’s rhyme) of each band.
Table 1 has the results. The best features (which particu-

larly help in recognizing neutral tones) were those based on
band energy. This cannot be attributed merely to such features
having more dimensions since even Spectral Balance, which
has d = 4, works better than most non-band-energy features.
Despite the small size of the dataset, there is enough evi-

dence to suggest that band energy features, particularly EQ15,
are an appropriate measure of VQ for our purposes.

5. EXPERIMENTS II: BAND ENERGY

We now perform more experiments with EQ15 using a much
larger subset of 1159 stories spanning ∼10 hours of speech,
with ∼120 000 syllables for training and∼40 000 for testing.
EQ15 consists of fteen bands, each of 500Hz in band-

width. We refer to bands according to their mid-frequency:
The rst band B250 covers 0-500 Hz, the second band B500
covers 250-750 Hz, . . ., B3750 covers 3500-4000 Hz.
Suppose a syllable s has � := �s frames in its rhyme. Let

xin, for i = 1, . . . , � and n = 1, . . . , 15, be the energy in the
n-th band for the i-th frame. For each band n we computed
six types of features: the Mean and standard deviation (Stdv)
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Table 1. Classi cation performance using a variety of VQ
features in addition to the core set PID68 of features based
on overall intensity, pitch, and duration. The baseline, using
PID68 and no VQ features, is in bold.

Acc MeanF d
EQ15 0.6081 0.5594 15
vSN Balance 0.6066 0.5521 5
EQ8 0.6035 0.5613 8
EQ31 0.6002 0.5585 31
Sp. Tilt 0.5945 0.5318 4
H1−H2 0.5911 0.5195 4
Sp. Balance 0.5907 0.5345 4
AQ 0.5900 0.5214 4
QOQ 0.5892 0.5169 4
H1−A3 0.5870 0.5191 4
ClQ 0.5866 0.5174 4
NAQ 0.5862 0.5194 4
OQ2 0.5862 0.5161 4
OQa 0.5862 0.5155 4
— 0.5862 0.5132 0
OQ1 0.5858 0.5173 4
SQ1 0.5847 0.5079 4
SCG 0.5840 0.5095 4
SQ2 0.5809 0.5068 4

of x1n, . . . , x�n, the Gradient of line to best t to x1n . . . x�n,
the Midpoint x� �

2
�n, and the differences MeanMstart= μn−

x1n and MeanMmid = μn − x� �

2
�n.

Thus we considered ninety Band Energy features using
six types of measurements in fteen bands. With them only,
accuracy was 45.70%, and MeanF 0.4185. When added to
PID68, performance was 64.06% and 0.6187 respectively.
This is an improvement on using PID68 only, when per-
formance is 60.40% and 0.5400 respectively. Most of the
improvement is for neutral tones, for which the F score in-
creases from 0.3447 with PID68 to 0.6175 with the additional
band features. All improvements are statistically signi cant
at p << 0.01.

6. EXPERIMENTS III : SUBSETS OF BAND
ENERGY FEATURES

It is possible that not all 90 features are necessary, so we per-
formed two more sets of experiments: in the rst, we per-
formed 15 experiments; in each we used PID68 and all the
six types (gradient, meanMstart, etc) associated with one fre-
quency band. In the second, we performed six experiments;
in each, we used PID68 and one of the six types for all 15
bands. Detailed results are in [5]; we highlight some here.
While all energy bands contribute to recognition, some

are more important. Listing the 15 bands in descending or-

Table 2. Classi cation performance using PID68 only.
Precision Recall F

High 0.6089 0.5867 0.5976
Rising 0.5996 0.6789 0.6368
Low 0.5620 0.3822 0.4550
Falling 0.6196 0.7202 0.6662
Neutral 0.5409 0.2529 0.3447
Mean 0.5862 0.5242 0.5400

Table 3. Performance using PID68 and 90 band energy fea-
tures.

Precision Recall F
High 0.6406 0.6298 0.6351
Rising 0.6327 0.6763 0.6538
Low 0.5965 0.4270 0.4977
Falling 0.6517 0.7323 0.6897
Neutral 0.7111 0.5456 0.6175
Mean 0.6465 0.6022 0.6187

der of classi cation accuracy when they are added to PID68,
we have B500, B750, B1750, B2500, B2250, B2000, B1500,
B2750, B250, B1250, B1000, B3250, B3500, B3000, B3750
Energy below 500Hz has often been dismissed as a measure
of vocal strength, so it is unsurprising that B250 is one of the
less useful bands. On the other hand, B500 is de nitely the
most useful band, so perhaps it is the energy in frequencies
below 250Hz, rather than 500Hz, that is a poor cue for VQ.
Frequencies above 3000Hz are not very useful either, though
they are still useful; even B3750 provides an increase in ac-
curacy when added to PID68.
Things are clearer when considering types of features: the

most important are unquestionably Mean and Mid, followed
by MeanMstart and Gradient. At the other end, MeanMend
and Stdv are not very useful. If we drop them, i.e. use 60
features instead of 90, we can almost match the performance
with 90 bands, with classi cation accuracy 63.7%, and mean
F score 0.6116 (though the difference remains signi cant).

7. CONCLUSIONS

Band Energy features seem far more useful than other possi-
ble measures of Voice Quality for Mandarin Tone Recogni-
tion. That said, it is possible that such features are more a
measure of vocal strength than vocal quality.
We determined a set of ninety features that when added

to a core set of sixty-eight features based on pitch, duration,
and overall intensity, improved classi cation accuracy from
60.4% to 64.1% and the mean F score from 0.540 to 0.619.
Improvement is highest for neutral tones, for whom the F
score goes from 0.345 to 0.618. This improvement is not at
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the cost of other tones; only the F score for Falling tones (the
most common class) shows any decrease (and that too only
by 0.001).
In fact, it appears that neutral tones can only be recog-

nized using duration and energy; other experiments in [5]
failed to recognize any neutral tones using pitch alone. The
energy in various frequency bands allows us to characterize
neutral tone in a way that isn’t possible with pitch.
It remains to be seen if other bands provide better cues

than EQ15, and if any can improve the recall (still below 50%)
for low tones.
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