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ABSTRACT
In this paper, two weighted distance measures; the weighted
K-L divergence and the Bayesian criterion-based distance
measure are proposed to efficiently reduce the Gaussian mix-
ture components in the HMM-based acoustic model. Conven-
tional distance measures such as the K-L divergence and the
Bhattacharyya distance consider only distribution parameters
(i.e. mean and variance vectors of Gaussian pdfs). Another
example considers only mixture weights. In contrast to them,
the two proposed distance measures consider both distribu-
tion parameters and mixture weights. Experimental results
showed that the component-reduced acoustic models created
using the proposed distance measures were more compact
and computationally efficient than those created using con-
ventional distance measures.
Index Terms— speech recognition, acoustic model,

Gaussian mixture component reduction, distance measure,
mixture weight

1. INTRODUCTION

It is well known that acoustic likelihood calculation is
the most computationally expensive processing in Hidden
Markov Model (HMM)-based speech recognition. Generally
speaking, in total speech recognition processing, more than
60% of computational time is spent on acoustic likelihood
calculation. Thus, to speed up the speech recognition pro-
cess, acoustic likelihood computation should be reduced. A
lot of research has been done to solve this problem [1, 2, 3, 4].

To reduce the amount of acoustic likelihood computation,
without degrading recognition accuracy, several researches
have been made on reducing Gaussian mixture components
in HMM-based acoustic models [3, 4]. Their reduction tech-
niques work by merging Gaussian mixture components based
on distance measures that are defined between two Gaus-
sian probability density functions (pdfs). In Gaussian mix-
ture component-based HMM, the mixture weight for each
component is an important factor, as are the distribution pa-
rameters (i.e. the mean and variance vectors of Gaussian
pdfs). However, the conventional distance measures, such
as the Kullback-Leibler (K-L) divergence [3, 5, 6] and the
Bhattacharyya distance [5, 6] consider only distribution pa-
rameters. On the other hand, in [4], the distance measure
considers only mixture weights.

In this paper, we propose two weighted distance mea-
sures; the weighted K-L divergence and the Bayesian criterion-

based distance measure that consider both distribution param-
eters and mixture weights. The experimental results showed
that the component-reduced acoustic models created using
the weighted distance measures were more compact and com-
putationally efficient than those created using conventional
distance measures.

2. CONVENTIONAL DISTANCE MEASURES

In this section, we classify the conventional distance mea-
sures that consider either distribution parameters (i.e. mean
and variance vectors of Gaussian pdfs) or mixture weights,
and explain their characteristics. We denote the k-th mixture
component in an HMM state as ck(x), which consists of an
I-dimensional diagonal covariance Gaussian pdf gk(x) and
its weight wk (i.e., ck(x) = wkgk(x)). In gk(x), we denote
the i-th element of the mean and variance vector as μki and
σki, respectively.

2.1. Distance Measures Which Consider Only Distribu-
tion Parameters

The most representative examples are the K-L divergence
(dD) [3, 5, 6] and the Bhattacharyya distance (dB) [5, 6].
dD is a distance measure based on the difference area (or
log-likelihood ratio) of two Gaussian pdfs. dB , in contrast, is
based on their overlap area.
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More properly, dD should be referred as “symmetrized” K-L
divergence. But, in this paper, we omit it for shortening.

We explain the characteristics of dD and dB using Fig.1.
The figure shows four mixture components in an HMM state.
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Fig. 1. Component pairs merged by each distance measure.

Each of them consists of a one-dimensional diagonal covari-
ance Gaussian pdf. To simplify the explanation, we assume
that all Gaussian pdfs have a common variance of 1.0. We
try to reduce the number of mixture components to three by
merging one pair of mixture components. We should choose
the pair of mixture components that gives the minimum dif-
ference in likelihood of the state before and after merging. By
this criterion, c3(x) should not be chosen because its weight
is largest in the state. Moreover, c4(x) also should not be
chosen because it is located far away from the other three
components. The remaining components, c1(x) and c2(x),
are thus the pair that should be merged because they are lo-
cated close to each other and their weights are not too large.
However, when using dD or dB , mixture weights are ignored,
c2(x) and c3(x) are merged because they are the closest pair
among all of the pairs.

2.2. Distance Measure Which Considers Only Mixture
Weights

In [4], a sum of mixture weights of two components is used
as the distance measure as follows (dw).

dw(c1(x), c2(x)) = w1 + w2 (3)

Using this measure, the larger the mixture weight is, the less
likely it is that components such as c3(x) in Fig.1 will not
be chosen for merging with other components. This charac-
teristic is reasonable in merging components, as described in
Section 2.1. Nonetheless, the distribution parameters are ig-
nored; sometimes even widely separated pairs such as c1(x)
and c4(x) are chosen to be merged.

3. PROPOSED DISTANCE MEASURES

We propose two distance measures that consider both distri-
bution parameters and mixture weights. These measures are
suitable for merging mixture components.

3.1. Weighted Kullback-Leibler Divergence

As a reasonable extension, by multiplying the mixture weight
to each Gaussian pdf in the definition of the conventional K-
L divergence described by Eq.(1), we get the definition of the
weighted K-L divergence (dwD) as follows [6].
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Here, there are the two mixture components, c1(x) and
c2(x). They each have a one-dimensional (I = 1) diagonal
covariance Gaussian pdf with a common variance of 1.0 and
respective means of μ11 = −1.0 and μ21 = +1.0. The
mixture weights are denoted as w1 and w2. Fig.2 shows
the values of dD, dB , and dwD as functions of w1(= w2),
continuously ranging from 0.01 to 1.00. As can be seen this
figure, dwD varies with mixture weight, while dD and dB do
not vary. This characteristic of dwD is the same as with dw
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Fig. 2. Component distances as functions of mixture weights.
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and is reasonable for component merging. Having both the
characteristics of dD and dw, dwD enables optimal compo-
nent merging. Thus, by using dwD, c1(x) and c2(x) can be
merged, as shown in Fig.1.

On the other hand, similar to dwD, we can also consider
placing mixture weights on the definition of the conventional
Bhattacharyya distance described by Eq.(4) (dwB) [6].

dwB(c1(x), c2(x))

= − log
∫ √

w1g1(x)w2g2(x)dx

= −I

2
log w1w2 + dB(c1(x), c2(x)) (5)

However, as shown in Fig.2, by using dwB , the larger the mix-
ture weight is, the easier it will be for the component to be
merged with other components. This characteristic is against
the criterion of optimal component merging described in Sec-
tion 2.1; thus we can expect that dwB can not be a good mea-
sure for component merging.

3.2. Distance Measure Based on the Bayesian Criterion

Recently, the Bayesian criterion has been actively applied
to the problems in speech recognition. We propose a dis-
tance measure based on the Bayesian criterion in addition
to dwD. Concretely, we used the state split stopping crite-
ria that works on the tree-based state clustering described in
[7]. Based on the Bayesian criterion, by using prior distribu-
tion, robust model parameter estimation is possible even with
small training data. Thus, we can expect that the Bayesian
criterion-based distance measure will be effective for com-
ponent merging in an HMM state. In an HMM state s, by
denoting c0(x) as the merged component of c1(x) and c2(x),
gs(x) as the prior component which is obtained by merging
all of the components (its weight is 1.0), and F(ck(x), gs(x))
as the Bayesian evaluation function of ck(x), the Bayesian
criterion-based distance measure between c1(x) and c2(x) is
obtained as follows.

dBC(c1(x), c2(x), gs(x))
= F(w1g1(x), gs(x)) + F(w2g2(x), gs(x))

−F(w0g0(x), gs(x)) (6)

4. MIXUTRE COMPONENT REDUCTION
ALGORITHM

We used the mixture component algorithm as follows. This
algorithm is based on the one described in [3].

(a) For the baseline acoustic model to be reduced, train the
one that has a fixed number of Gaussian mixture com-
ponents in every HMM state.

(b) In each HMM state of the acoustic model, calculate the
distance between all of the Gaussian mixture compo-
nent pairs and merge the closest one. By repeating
this procedure, construct the Gaussian component bi-
nary tree in the bottom-up direction.

(c) By tracing the Gaussian component binary tree con-
structed in step (b) in the top-down direction, repeat the
splitting of the Gaussian components. By stopping this
procedure based on the MDL criterion, a reduced num-
ber of Gaussian mixture components can be obtained in
each HMM state.

(d) Re-train the reduced acoustic model that is obtained by
the above procedure.

We can put a penalty factor into the MDL criterion in step (c),
and, by adjusting this factor we can get the desired size of the
reduced model. In [3], the Gaussian component binary trees
in each HMM state are constructed in the top-down direction
using the k-means clustering technique and the conventional
K-L divergence described by Eq.(1). Our algorithm, in con-
trast, works in bottom-up direction as described in step (b).
This is because, when using distance measures that consider
mixture weights such as dw, dwD, dwB , and dBC , there is no
reasonable criterion for how to weight the centroid compo-
nents that are generated in the k-means clustering procedure.

5. SPEECH RECOGNITION EXPERIMENTS

We evaluated the six distance measures described above in the
BNF-grammar-based four-figure digits utterance recognition
experiments.

5.1. Experimental Setup

Using a 45.5-hour speech database, which consisted of
131,603 word utterances by 93 male and 88 female speakers
(not including digit utterances), we trained a baseline acous-
tic model that had 2,000-states with 16-mixture components
in each HMM state (thus, the total number of mixture com-
ponents was 32,000). Using the six distance measures (dD,
dB , dw, dwD, dwB , and dBC ) described in Sections 2 and 3,
we reduced the size of the baseline model to get a reduced
model that had 8,000 mixture components (corresponding to
4-mixture components in each HMM state, but the number of
mixture components in each state was not fixed).

Evaluation experiments were done for the six reduced
models just after the reduction procedure (i.e. after step (c)
in the reduction algorithm of Section 4) and their re-trained
versions (i.e. after step (d)). The reason why we evaluated the
models just after the reduction procedure was that we wanted
to purely compare the aptitudes of the six distance measures
in component merging. The models were re-trained using
the conventional maximum likelihood parameter estimation
method with five-time iterations. For comparison, the 4, 10,
and 14-mixture fixed component models that were generated
while constructing the baseline 16-mixture models were also
evaluated (denoted as b4, b10, b14, and b16).

Eight male and eight female speakers uttered the evalua-
tion speech data. Each speaker uttered 40 four-figure digit se-
quences. Thus, the total number of utterances was 640. Each
utterance was recognized by the BNF-grammar that accepts
any-figure digit sequences. We used the speech recognition
engine VoiceRex [8], which was developed at NTT Cyber
Space Labs.
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5.2. Experimental Results

The experimental results are shown in Fig.3. The vertical axis
shows the digit accuracy. Real Time Factors (RTFs) of b4, b10,
b14, and b16 are shown in the parentheses. They are normal-
ized by the RTF of b16. The RTFs of the 12 reduced acoustic
models are almost equal to the RTF of b4 (0.45), which has
the same model size as the reduced models.

Before the re-trainings (just after reduction), it can be seen
that there are great differences in the digit accuracies of the six
reduced models. The two proposed distance measure (dwD

and dBC ) based models give better accuracies than conven-
tional ones (dD, dB , and dw-based models). The dBC-based
model shows the best result. It gives a 14% improvement in
accuracy (corresponding to 45% error reduction) compared
with b4, which has the same size with the dBC -based model
(from 68.59% of b4 to 82.65% of dBC ). The accuracy of the
dBC -based model is almost the same as that of b10 (82.93%),
and comparing with this model, the dBC -based model gives a
39% RTF reduction (from 0.74 of b10 to 0.45 of dBC ) and a
60% model size reduction (from 20,000-components of b10

to 8,000-components of dBC ). The accuracy of the dwD-
based model (80.82%) is 7% higher than that of the dD-based
model (73.59%) (corresponding to 27% error reduction). This
improvement is obtained by the effect of considering mix-
ture weights in combination with the conventional K-L diver-
gence. However, the dwB-based model does not show good
performance. Consequently, we can confirm that dwB is not
a reasonable distance measure for component merging, as ex-
pected in Section 3.1.

After the re-trainings, all reduced models show perfor-
mance improvements. The improvements are large especially
for the models that had poor performances before the re-
trainings (such as the dw and dwB-based models). However,
the dwD and dBC -based models still has the best perfor-
mances. The dwD and dBC -based models give 18% improve-
ments in digit accuracy (corresponding to 58% error reduc-
tion) compared with b4 of the same size with the dwD and
dBC -based models (from 68.59% of b4 to 86.80% of dBC ).
Moreover, these accuracies are close to that of b14 (87.46%),
and compared with b14, the dwD and dBC -based models give
a 50% RTF reduction (from 0.90 of b14 to 0.45 of dBC ) and
a 71% model size reduction (from 28,000-components of b14

to about 8,000-components of dBC).

6. CONCLUSION

We proposed two weighted distance measures; the weighted
K-L divergence and the Bayesian criterion-based distance
measure for efficient reduction of the Gaussian mixture com-
ponents in the HMM-based acoustic model. They consider
both distribution parameters (i.e., mean and variance vec-
tors of Gaussian pdfs) and mixture weights. Using these
distance measures, in the BNF-grammar-based four-figure
digits utterance recognition experiments, we could reduce the
model size by 71% and the RTF by 50% from the baseline
while maintaining higher accuracies than were possible with
conventional distance measures.
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Fig. 3. Speech recognition results using component-reduced
models created by each distance measure.
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