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ABSTRACT  

In this paper we present a novel technique of constructing phonetic 
decision trees (PDTs) for acoustic modeling in conversational 
speech recognition. We use Random Forests (RF) to train a set of 
PDTs for each phone-state unit and obtain multiple acoustic 
models accordingly, and we extend the PDT-based state tying to 
RF-based state-tying.  We combine acoustic scores at the model 
level in decoding search. Several methods are investigated to 
estimate the weight parameters for model combination, including 
maximum likelihood estimation of the weights from training data, 
as well as using confidence scores of P-value or relative entropy to 
obtain the weights dynamically from online data. Experimental 
results on a telemedicine automatic captioning task demonstrate 
that the proposed RF-PDT technique leads to significant 
improvements in word recognition accuracy. 
 

Index Terms—Random Forests, phonetic decision trees, 
acoustic modeling, score combination  

 
1. INTRODUCTION  

1Phonetic decision tree (PDT) based state tying is commonly used 
in acoustic modeling for large vocabulary continuous speech 
recognition. PDT can incorporate phonetic knowledge into 
triphone state clustering and model triphone units or contexts that 
do not occur in training data [1]. Several efforts have been reported 
to improve PDT state tying in acoustic modeling [2]-[4]. These 
methods aim to find one optimal PDT for each phone or phone 
state. On the other hand, in machine learning, using ensemble 
methods for classifier design has been studied and advocated [7]. 
Random Forests (RF) as proposed in [8] generates an ensemble of 
decision trees by stochastically sampling training data and 
variables, and it is considered unexcelled in accuracy among 
current classification techniques [8] [9]. A variant of RF was 
previously used in [5] and [6] for constructing PDTs to generate 
multiple 1-best decoding output hypotheses.  

In this paper, we present a technique of training multiple PDTs 
for each phone-state unit following the RF algorithm of [8] [9]. 
Instead of combining output hypotheses at the word level after 
decoding search as in [5] and [6], we combine acoustic scores at 
the model level during decoding search to avoid multiple runs of 
decoding search and achieve better accuracy performance. We 
generate RF tied states by tying triphone states that belong to 
identical tied states across all PDTs. Several methods are 
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investigated to estimate the model combination weights, which 
may be specific to RF tied states, specific to speech frame inputs, 
or both. 

The rest of the paper is organized as follows. We introduce the 
background of RF in section 2 and propose the RF-based PDTs in 
section 3. In section 4 we discuss methods of combining acoustic 
scores from multiple acoustic models in decoding search. In 
section 5 we provide a detailed account of experimental results. 
We conclude our work in section 6. 
 

2. BACKGROUND OF RANDOM FORESTS  
An early example of RF is bagging [10], where to grow each tree a 
random sampling with replacement is made from a training data 
set to generate bootstrap replicated training sets. Another example 
is random split selection [11], where at each tree internal node a 
split is selected at random from among the n-best splits for the 
node. To classify an object, each tree gives a vote for the object, 
and the classification result is the one receiving the most votes 
from the collection of trees. 

The common element in these procedures is that, for the kth 
tree, a random vector k is generated that is independent and 
identically distributed with the random vectors of other trees. A 
tree is grown by using the training data set and its random vector. 
Consider a training set of N data samples. In bagging, the random 
vector  consists of N random numbers generated as the counts in 
N boxes resulting from N darts thrown at the boxes, and a count 
thus corresponds to the number of times the associated data sample 
will be used in constructing the tree. Let L equal the number of 
non-leaf nodes in the tree. In n-best random split selection,  
consists of L independent random integers with values in the range 
of 1 through n, indicating the question in the n-best questions that 
will be used to split the node.  

In the RF method of Breiman and Cutler [8], a tree of a forest 
is grown as follows. First, choose N samples randomly from the 
original training dataset of N samples as in bagging for growing the 
tree. Second, at each node, select m splitting variables randomly 
out of a total of M variables and choose the best split determined in 
these m variables at each node. Each tree is grown to the fullest 
extent based on some predefined thresholds without pruning.  

 
3. RANDOM FORESTS-BASED PDTS   

In the current work, we explore the potential power of RFs of [8] 
to generate multiple PDTs for each HMM state of a phone unit. 
We propose a modified question selection method to train PDTs in 
order to simplify the construction of random forests of acoustic 
models which are much more complex than the problems 
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considered in [8]. We randomly choose a subset of m phonetic 
questions out of a total of M questions to train one set of PDTs for 
all phone-state units, with one PDT for one phone-state unit, and 
refer to the acoustic models thus produced as one set of acoustic 
models. The procedure of constructing a PDT is the same as the 
commonly adopted deterministic greedy method. We then 
randomly choose another subset of m questions to generate another 
set of PDTs and so on. Different from the method of [8], we use 
the full set of training data of each phone state instead of randomly 
sampling the data to avoid completely dropping out some triphone 
state data in constructing a tree since our training data set is small.  

Multiple sets of PDTs are thus generated for all speech units, 
and from which we obtain multiple sets of acoustic 
models

KMSMS ,,1
. We define RF-tied states as the following. 

Each PDT set k has Nk models
kNk k

MM ,,1
 corresponding to the 

Nk tied states. Each triphone state Sr therefore has K models 
Krr K

MM ,11
, where 

kr  is a mapping from the triphone state Sr to 

a tied state in the model set k. If for two triphone states Si and Sj, 
kk ji  for Kk ,1 , that is, Si and Sj belong to the same tied 

state in every PDTs, then we say that Si and Sj  belong to the same 
RF tied state ESl. Fig. 1 illustrates the construction of RF tied 
states from two PDTs. The triphone states of a RF tied state share 
the same set of models 

Kll K
MM ,,11

. Since in the single PDT-

based method data distribution within a tied state is usually 
modeled by a Gaussian mixture density (GMD), a RF tied state is 
modeled by multiple GMDs. 

 
Fig. 1 An illustration of RF tied states.  

 
4. SCORE COMBINATION   

We investigate methods of combining the multiple acoustic models 
to improve accuracy of decoding search. For each speech feature 
vector xt, we need to combine the multiple GMDs in each RF tied 
state l to compute an acoustic score, that is 

),|()|( ,11 Klltlt K
MMxFESxP . (1) 

Considering a linear combination of acoustic scores gives 
K

k
klttlklt k

MxpwESxP
1

)|()|( . (2) 

We need to estimate the weights wtlk, which may vary with feature  
xt or model 

klk
M , with 1

1

K

k
tlkw  and 0tlkw . 

 

4.1 Maximum likelihood based weight estimation   
First, we consider weights that are specific to each RF tied state, 
that is 

K

k
kltlklt k

MxpwESxP
1

)|()|( . (4) 

Let 
TxxX ,,1

 be i.i.d observations drawn from a RF tied 
state ESl in training data set, and denote ),( 1 lKll www .  The 
likelihood function is  

T

t
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k
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The maximum likelihood estimation (MLE) of 
lw  gives the 

following: 
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with 1
1

K

k
lkw  and 0lkw . 

We use the EM algorithm [12] to iteratively compute lw . The 
reestimation formula is straightforwardly derived as  
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where Kwlk /10  for Kk ,,1 , and ,1,0r . 
 
4.2 Confidence score based weight estimation 
 
We consider using confidence scores to determine the time-
dependent weights. The idea is that if for a RF tied state the 
confidence score of a certain model 

klk
M  on the feature xt is larger 

than other models, i.e., we have higher confidence that xt is 
generated by 

klk
M , then 

klk
M  should contribute more to xt 's 

acoustic score, and vice versa. Here we use the confidence score 
P-value. Unlike likelihood scores, P-value measures some area 
under a pdf curve with the area size depending on the distance 
between a data sample and the distribution mean as well as the 
distribution shape. P-value was first proposed in [13] as a 
confidence feature for speech recognition.  

The P-value of the feature tx  evaluated on the Gaussian 
mixture density function or the tied state

klk
M , )|( kltv k

MxP , can 

be used to measure the fit between 
tx  and 

klk
M . The larger the 

)|( kltv k
MxP , the closer 

tx  is to
klk

M . We set the weight of 
klk

M  

for 
tx  in the RF tied state l, i.e., wtlk, to be directly proportional to 

the P-value )|( kltv k
MxP , that is  

.,,2,1,
)|(
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k
 (8) 

4.3 Relative entropy based weight estimation 
 
We next consider using relative entropy (R-entropy) in a set of 
acoustic models as the weight of the models. As discussed above, 
through using RF-based PDTs we obtain multiple sets of acoustic 
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models
KMSMS ,,1

, with the set k having Nk physical models 
(GMDs of tied states)

kNk k
MM ,,1

. For a feature vector tx , the 

acoustic score )|( klt k
Mxp  measures the likelihood of tx  being 

emitted by a RF tied state ESl using the model
klk

M . If the values 

of )|(,),|( 1 kNtkt k
MxpMxp  are spread out, then the kth set of 

acoustic models is discriminative. Relative entropy can be used to 
measure the distribution spread of acoustic scores within each set 
of acoustic models, which is defined as the Kullback–Leibler 
divergence (KLD) from the distribution of acoustic scores among 
the models in the kth set of acoustic models to the uniform 
distribution 1/Nk, that is,  

k

N

j
tjktjk

N

j k

tjk
tjktk Npp

N
p

pD
kk

loglog
/1

log
11

,  (9) 

where the distribution of acoustic scores is defined by 
kN

n
nktjkttjk MxpMxpp

1

)|(/)|( . A large value of 
tkD  would 

indicate that the scores of the kth set of acoustic models deviate 
significantly from the uniform distribution of 1/Nk. Therefore the 
weight of each model set can be made to be proportional to its 
relative entropy, defined as 

K

n
tntktk DDw

1
/ ,  Kk ,2,1 . (10) 

In addition to the three methods presented above, the acoustic 
scores may also be combined in a time-dependent way by using 
the maximum score (MAX), or an average of n-best scores out of 
K models (n-K). The weights may also be set uniformly (Uniform). 
In our experiments, these methods were evaluated along with the 
above proposed three methods and the results were compared. 
 

5. EXPERIMENTAL RESULTS   
5.1 Experimental setup 
 
The proposed methods were evaluated on the Telemedicine 
automatic captioning system developed at the University of 
Missouri-Columbia [14]. The training and test speech datasets 
were extracted from healthcare providers’ conversations with 
clients in mock telemedicine interviews. Speech features consisted 
of 39 components including 13 MFCCs and their first and second 
order time derivatives. Feature analyses were made at a 10 ms 
frame rate with a 20 ms window size. Gaussian mixture density 
based hidden Markov models (GMD-HMM) were used for within-
word triphone modeling, where each HMM had 3 emitting states, 
each state was modeled by a GMD with 16 Gaussian components, 
and the size of mixtures was optimized for the baseline. Speaker 
dependent acoustic models were trained for five speakers Dr1 - 
Dr5. The task vocabulary size is 46,480. Baseline acoustic models 
used the single PDT-based state tying, with the number of tied 
states or physical models averaged over the five speakers being 
1429. The decoding engine is TigerEngine 1.0 [15]. Please refer to 
[4] for a detailed description of the experimental setup. 
 
5.2 Experimental results  
a. Performance vs. model combinations and forest sizes 

We trained multiple sets of PDTs by using the proposed RF 
technique and obtained multiple sets of acoustic models. The 
number of phonetic questions m was set to be 200 out of the M = 
216 questions (see below for a discussion on m) as defined in HTK 

[16]. The number of RF tied-states in general increases with m and 
the forest size K. The resulting number of RF-tied states averaged 
over the five speakers was 7478 when K equals 50. The acoustic 
scores were combined by using the proposed methods of MLE, P-
value, and R-entropy, as well as the methods of maximum score 
(MAX), n-best out of K models (n-K), and simple average 
(Uniform). In addition, weights from MLE and relative entropy 
were averaged (MLE+R-entropy). Table I gives the performance 
in word recognition accuracy averaged over the 5 speakers’ test 
sets. 

 
Table I Word accuracies (%) averaged over five speakers. 

(a) Baseline and n-best methods with different n-K. 
Baseline 78.96 
n-best (5-20) 80.49 
n-best (5-50) 80.62 
n-best (10-50) 80.79 
n-best (10-100) 80.31 
n-best (20-100) 80.56 

(b) Other methods of model combination. 
K  

10 20 50 100 
MAX 80.35 80.41 79.95 79.70 

Uniform 80.39 80.57 80.71 80.80 
MLE 80.47 80.81 80.90 80.92 

P-value 80.43 80.69 80.85 80.90 
R-entropy 80.39 80.64 80.88 80.91 

MLE+R-entropy 80.39 80.72 80.95 80.96  
From Table I we observe that the proposed RF-based PDTs 
improved word recognition accuracy significantly, and the effect 
was dependent on the score combining method and the forest size. 
When the forest size was large (K=50, 100), using the averaged 
weights from MLE and relative entropy yielded best results. 
Uniform weight was a good choice as well, since it was simple to 
implement and its performance was competitive to the best results. 
The MAX method’s performance deteriorated when K became 
large, since maximum score is susceptible to unreliable models, 
and as K increases, the possibility that the score of some unreliable 
model turns into a maximum score becomes larger.  
 
b. Performance vs. size of question subset 

The subset size m of phonetic questions for individual PDTs 
needs to be chosen to balance the need for maintaining qualities of 
individual PDTs and reducing correlations among the PDTs.  We 
investigated the effect of different values of m on word recognition 
accuracy for a fixed forest size K=50. Table II summarizes the 
results, where we used the MLE method to estimate the weights of 
multiple acoustic models. We observe that when m=15, the word 
recognition accuracy is lower than the baseline, since now all the 
PDTs are very weak. As m increases, word recognition accuracy 
improves, but the accuracy differences among m=100, 150, 200 are 
small. As m increases further, word accuracy gets noticeably 
lowered again, since now the correlations among the trees become 
too high. It appears that for the current task m in the range of 100 
to 200 can all be considered as good choices.  

 
Table II The effect of question subset size m on word accuracy. 

Subset size  m 15 20 100 150 200 210 
Word accuracy (%) 77.68 80.38 80.92 80.96 80.90 80.65 
 
c. Performance vs. model complexity 

4171



We evaluated the performance of RFs with respect to the 
complexity of Gaussian mixture densities, i.e., the mixture size or 
the number of Gaussian components per GMD, with the state tying 
thresholds in the PDTs kept unchanged. Table III summarizes the 
word recognition accuracies with the number of Gaussian 
components per GMD varied to be 8, 16, 20 and 24. For the RF 
method, we set the question subset size m = 150 and used the MLE 
method to estimate weights for model combination. From Table III 
we observe that the RF method improved accuracy performance 
over the baseline in every evaluated mixture size. In the baseline, 
using a mixture size of 16 yielded best performance, but further 
increasing the size led to overfitting and thus decreased accuracy. 
In RF, accuracy performance improved with the mixture size, and 
at the mixture size of 24 overfitting still did not occur, indicating 
the robustness of the RF-based state tying to overfitting.  

Table III Word accuracies vs. mixture size, with m=150 for RFs. 
Number of Gaussian components  per GMD  

8 16 20 24 
Baseline 77.65 78.96 78.68 78.15 
RF method, K=10 78.08 80.47 81.57 81.70 
RF method, K=20 78.06 80.81 81.86 81.92  

d. Comparison with output hypothesis integration 
We next compared performance of our proposed RF method 

with the method of integrating output hypotheses proposed in [5]. 
In doing so, we trained multiple sets of PDTs by using n-best 
random split selection, where n equals 10, and each PDT tied state 
has 16 GDFs as in the baseline. We then carried out speech 
decoding evaluation K times by using K sets of acoustic models. 
For each speech utterance, multiple 1-best recognition hypotheses 
were generated with each obtained from one set of the acoustic 
models. We used confusion network (CN) [4] to combine the 
multiple hypotheses output, which is made equivalent to the 
hypothesis integration method of ROVER as used in [5].  For 
details of using CN to integrate recognition hypotheses, please 
refer to [4]. Table IV summarizes recognition word accuracies by 
using the PDTs generated by n-best random split selection 
followed by CN based hypothesis integration.   
Table IV Word accuracy by n-best random split selection and CN. 

K 10 20 50 
Word accuracy (%) 79.88 79.97 80.24 

  
From Table IV we observe that n-best random split selection with 
hypothesis integration at the output word level also improved 
accuracy performance, but the gain is less than what are obtained 
by our proposed method of RFs for acoustic model combination. 
Furthermore, combining output hypothesis at the word level 
requires running decoding search K times, which is much slower 
than our methods of combining acoustic scores when single 
processor computers are used.  
      We also conducted a significance test on performance 
differences between the proposed methods and the baseline 
method, as well as the method of n-best random split selection 
with hypothesis integration. The results show that our proposed 
methods improved the word recognition accuracy significantly 
over the two comparison cases. For details, please refer to [17]. 

 
6. SUMMARY  

In this paper we have presented a novel Random Forests based 
technique of constructing phonetic decision trees for acoustic 
modeling in conversational speech recognition. We have 

introduced a mechanism of tying triphone states over PDTs of a 
RF. The method allows using more specific models than the 
conventional single PDT method for acoustic modeling without 
running into the problem of overfitting. We have proposed several 
methods to combine the acoustic scores of multiple models in 
decoding search. We have demonstrated through experimental 
results on a large vocabulary conversational speech recognition 
task that the proposed techniques significantly improved 
performance of word recognition accuracy, and on this task it 
achieved higher accuracy performance and faster decoding speed 
than using word hypothesis integration at recognition output. 
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