
DISCRIMINATIVE LEARNING FOR OPTIMIZING DETECTION PERFORMANCE IN
SPOKEN LANGUAGE RECOGNITION

Donglai Zhu1, Haizhou Li1, Bin Ma1, Chin-Hui Lee2

1 Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613
2School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA. 30332 USA

(E-mails: {dzhu,hli,mabin}@i2r.a-star.edu.sg chl@ece.gatech.edu)

ABSTRACT
We propose novel approaches for optimizing the detection
performance in spoken language recognition. Two objective
functions are designed to directly relate model parameters to
two performance metrics of interest, the detection cost func-
tion and the area under the detection-error-tradeoff curve, re-
spectively. Both metrics are approximated with differentiable
functions of model parameters by using a smoothing function
based on a class misclassi cation measure. The model param-
eters are optimized by using the generalized probabilistic de-
scent algorithm. We conduct experiments on the NIST 2003
and 2005 Language Recognition Evaluation corpora. Results
show that the proposed approaches effectively improve the
performance over the maximum likelihood training approach.

Index Terms— detection error tradeoff, detection cost
function, discriminative learning, Gaussian mixture model,
spoken language recognition

1. INTRODUCTION

A good spoken language recognition (SLR) system is usu-
ally optimized to have low miss-detect and false-alarm rates
as well as a good tradeoff between the two error types. In
NIST Language Recognition Evaluations (LRE) [1], a detec-
tion error tradeoff (DET) curve is used to illustrate explicitly
the overall performance and the possible error rate tradeoffs
between the two error types at each of the operational points
[2]. For any point on the DET curve, which is determined by
a decision threshold, a detection cost function (DCF) can be
obtained to indicate the system performance with respect to
the threshold [1].
In the SLR literature, little attention has been given to di-

rectly optimizing the tradeoff between the two types of de-
cision errors and the actual operation point. One of the suc-
cessful approaches for SLR is phonotactic modeling, where a
speech utterance is transcribed by phoneme recognizers and
the scoring is performed on phoneme strings, e.g., parallel
phoneme recognizer followed by either language modeling
(PPRLM) [3] or by vector space modeling (PPR-VSM) [4].
In these methods, phoneme recognizers, language models and

classi ers are usually trained with common criteria in pattern
recognition, e.g., maximum likelihood (ML) and large mar-
gin. These criteria don’t correlate with DET directly, there-
fore they may not lead to an optimal DET performance.
Inspired by the research in optimizing discrete error rates

through differentiable functions and the receiver operating char-
acteristic curve with the Wilcoxon Mann Whitney (WMW)
statistic [5, 6, 7], we directly optimize the language detec-
tion performance by minimizing two metrics: the value of
DCF and the area under the DET curve. These two discrete
metrics are approximated with continuous and differentiable
objective functions by using a smoothing function based on a
class misclassi cation measure, which is commonly adopted
in the minimum classi cation error (MCE) framework [5] de-
noting the degree of separation between the desired class and
the competing classes. These two objective functions are opti-
mized in training of Gaussian mixture models (GMMs) in our
PPR-VSM system [4]. The GMM parameters are reestimated
using the generalized probabilistic descent (GPD) algorithm.
Experimental results on the NIST 2003 and 2005 LRE tasks
show that the two approaches effectively improve the SLR
performance over the conventional ML training approach.

2. OPTIMIZATION OF DETECTION
PERFORMANCE

Optimization is performed on the backend GMM language
detectors of the PPR-VSM system [4]. A PPR-VSM system
adopts a collection of parallel phone recognizers as the front-
end that converts an input utterance into multiple phone se-
quences. With the VSM backend, the n-gram statistics from
each phone sequence form a high-dimensional feature vec-
tor, and a single composite vector is generated by stacking
all the feature vectors. We further design an ensemble of bi-
nary SVM classi ers. The outputs of these SVM classi ers
constitute a discriminative vector to represent the phonotactic
features of a composite vector [8]. For each target language
i, we build a language detector consisting of two GMMs with
the discriminative vectors: a positive GMM λ+

i models the
target language, and a negative GMM λ−

i models its compet-
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ing languages. The con dence of a test sample x is de ned as
the likelihood ratio as follows:

fi(x) = log p(x|λ+
i ) − log p(x|λ−

i ) . (1)

The higher the fi(x) is, the more con dence the sample x
gains. The likelihood ratio in Eq. (1) is used for the nal
language recognition decision. Parameters of the GMMs are
commonly estimated using theML estimation: λ̂c

i = arg maxλc
i

p(X c
i |λc

i ), where c ∈ {+,−}. X c
i is the collection of training

data for λc
i . X+

i consists of examples of language i, while
X−

i consists of examples of competing languages. Since the
ML estimation attempts to maximize the likelihood of train-
ing data against the models, the resulted GMMsmay not yield
optimal DET curve in the SLR task. In this paper we study to
retrain the GMM parameters to optimize the DET curve.

2.1. Minimizing DCF

The detection cost function (DCF) in the NIST language recog-
nition evaluation plan is de ned as follows [1]:

CDet = (
M∑
i=1

CDet(i))/M , (2)

CDet(i) = CmissPtgtPmiss(i)

+
1

N − 1

∑
j �=i

Cfa(1 − Ptgt)Pfa(i|j) , (3)

where Cmiss and Cfa represent the relative costs of a miss
and a false alarm, respectively. Ptgt is a priori probability
that a trial is a target trial. N is the number of possibly ap-
peared languages, which may be larger than the number of
target languages M . Pmiss(i) is the miss probability for the
ith target language and Pfa(i|j) is the false alarm probability
of the jth language’s examples incorrectly labeled as the ith
target language. For simplicity of the evaluation, both Cmiss

and Cfa are set to be 1, and Ptgt is set to be 0.5.
Direct optimization of cost in Eq. (2) is dif cult because

it is not a continuous and differentiable function of the clas-
si cation parameters. Therefore, it needs to be approximated
with a smoothed function. Similar to the MCE approach [5],
let us de ne a class misclassi cation measure di(x; Λ) where
x is a feature vector and Λ is the set of model parameters.
di(x; Λ) > 0 implies a misclassi cation and di(x; Λ) ≤ 0
means a correct decision. It is then embedded in a loss func-
tion by using the following sigmoid function: li(x; Λ) =
1/[1 + exp(−γdi(x; Λ) + θ)], where γ is a positive constant
that controls the size of the learning window and the learn-
ing rate, and θ is a constant measuring the offset of di(x; Λ)
from 0. The miss and false alarm probabilities can then be

approximated by summing over training samples, as follows:

Pfa(i|j) =
1

|Ωj |
∑

x∈Ωj

[1 − li(x; Λ)] , (4)

Pmiss(i) =
1

|Ωi|
∑
x∈Ωi

li(x; Λ) , (5)

where Ωi is the set of training data belonging to i-th lan-
guage. As presented previously, for each target language i,
two GMMs are respectively used to model the positive data
set Ωi and the negative data set Ω̄i = {Ωj}|j �=i. We de ne
di(x; Λ) = − log p(x|λ+

i ) + log p(x|λ−
i ), where p(x|λc

i ) =∑
m wc

imN (x; μc
im, Σc

im), and c ∈ {+,−},m denotes a Gaus-
sian component, wc

im, μc
im, Σc

im are respectively the weight,
mean vector, and covariance matrix of them-th component in
the c-th GMM for the language i.
With above approximations, the DCF function Eq. (2) is

reformed to a smoothed function L(X ; Λ) where X means
the whole training set. In this paper, we minimize L(X ; Λ)
using the generalized probabilistic descent (GPD) algorithm
which iteratively updates parameters in the form of Λt+1 =
Λt − εt∇L(X ; Λ)|Λ=Λt , where t denotes the iteration num-
ber, the learning rate εt needs to satisfy the conditions for the
Robbins-Monro theorem [9], and

∇L(X ; Λ) =
1
M

⎡
⎣−Cfa(1 − Ptgt)

(N − 1)

∑
x∈Ωj

1
|Ωj |

∂li(x; Λ)
∂Λ

+CmissPtgt

∑
x∈Ωi

1
|Ωi|

∂li(x; Λ)
∂Λ

]
. (6)

In this paper we derive the updating formula for mean vectors
in the GMMs. In order to eliminate updating bias among di-
mensions, the mean vectors are rst transformed as: μ̃c

imd =
μc

imd/σc
imd [5]. Then terms to be estimated in Eq. (6) are

derived as follows:
∂li(x; Λ)
∂μ̃c

imd

= −γ(1 − li(x; Λ))li(x; Λ)sgn(c) ·
wc

imN (x; μc
im, Σc

im)∑
m′ wc

im′N (x; μc
im′ ,Σc

im′)

(
xd

σc
imd

− μ̃c
imd

)
. (7)

2.2. Minimizing area under DET curve

The area under the DET curve can be denoted by the value of
the normalizedWilcoxon-Mann-Whitney (WMW) statistic[6]:

AWMW (X ; Λ) =
∑U

u=1

∑V
v=1 I(fu, fv)
UV

, (8)

where {fu, u = 1, . . . , U} are the outputs of the classi er
on positive examples, {fv, v = 1, . . . , V } are the outputs on
negative examples, U and V are respectively the numbers of
positive and negative examples, and

I(fu, fv) =
{

1 fu > fv

0 otherwise (9)
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The non-differentiable function I(fu, fv) needs to be approx-
imated by a sigmoid function for deriving updating formulae.
Furthermore, the cost coef cients in Eq. (3) can be embed-
ded into the sigmoid function. In Eq. (3), miss probabilities
Pmiss(i) are multiplied by CmissPtgt while the false alarm
probabilities Pfa(i|j) multiplied by Cfa(1−Ptgt). Pmiss(i)
are caused by small values in {fu} that are lower than the
threshold. Pfa(i|j) are caused by large values in {fv} that
are higher than the threshold. Therefore, the sigmoid function
is de ned as follows: S(fu, fv) = 1/[1 + exp(−γ(cufu −
cvfv) + θ)], where cu = CmissPtgt, cv = Cfa(1 − Ptgt).
Eq. (8) is de ned for a binary decision problem. For our
multi-language detection problem, similarly to Eq. (2), Eq.
(8) can be rewritten as an average of the WMW statistics over
the target languages:

A(X ; Λ) =
1
M

M∑
i=1

Ai(X ; Λ) , (10)

where Ai(X ; Λ) is the WMW statistic for the ith language
and is computed as follows:

Ai(X ; Λ) =
1

|Ωi|
1

N − 1

∑
j �=i

1
|Ωj |∑

u∈|Ωi|

∑
v∈|Ωj |

S(fi(u), fi(v)) . (11)

Because the total area in the DET plot is normalized to 1,
the area under the DET curve, which is to be minimized, is
L(X ; Λ) = 1 − A(X ; Λ). Differentiating it with Λ we get:

∇L(X ; Λ) = − 1
M

1
|Ωi|

1
N − 1

∑
j �=i

1
|Ωj | ·∑

u∈Ωi

∑
v∈Ωj

γS(1 − S)(cu
∂fi(u)

∂Λ
− cv

∂fi(v)
∂Λ

) , (12)

where ∂fi(x)/∂Λ = −∂di(x)/∂Λ. The same derivation fol-
lows as that in Section 2.1.

3. EXPERIMENTS

We conduct SLR experiments on our PPR-VSM system [4].
The backend GMMs were trained on the CallFriend corpus
that consists of 12 languages: English, Hindi, Japanese, Ko-
rean, Mandarin, Spanish, Tamil, Arabic, Farsi, French, Ger-
man and Vietnamese [10]. For each speech utterance, a dis-
criminative vector of 110 dimensions was generated [8]. The
discriminative vectors are then modeled by GMM classi ers.
For each target language, two GMMs were de ned: a positive
GMM consisting of 32 Gaussian components and a negative
GMM consisting of 256 Gaussian components. NIST 1996
LRE data, which consists of a total of 1492 samples from

12 languages [1], were used as development set to provide a
threshold for the hard decision in DCF calculation. The NIST
2003 and 2005 LRE data were used as two testing sets [1].
The NIST 2003 data are composed of 1200 utterances from
12 target languages and 80 utterances of an out-of-target lan-
guage (OOL) – Russian. The NIST 2005 data are composed
of 3403 utterances from 7 target languages (English, Hindi,
Japanese, Korean, Mandarin, Spanish and Tamil) and 84 Ger-
man utterances.
The GMMs in the baseline PPR-VSM systemwere trained

with the ML estimation. Then the GMM parameters were
re-estimated using the two proposed approaches: minimum
of area under the DET curve (minDET) and minimum of the
DCF point (minDCF). The parameters were updated in a sample-
by-sample iterative procedure, i.e., the training samples were
sequentially processed and the GMM parameters were up-
dated after each training sample. To achieve the best con-
vergence, the training procedure can be repeated for several
epochs over the whole training set.
The value of the learning rate ε was empirically set to de-

crease in time from an initial value ε0 to 0. The decreasing
step size was set to be ε0/(E · |Ω|), where |Ω| is the number
of training samples in the training set, and E is the number
of epochs and set to 50. ε0 depends on the size of training
data and was set to 8.0E4 according to performance on the
development data. In the smoothing function, the parameter
γ affects the slope of the function curve and was set to satisfy
E(γ · fi(x)) ∝ 1.
Figure 1 illustrates equal error rates (EERs) of the two

approaches after each of 50 epochs. Curves show that the two
approaches can quickly reduce EERs and minDCF exhibits
slightly better than minDET in the rst several epochs (less
than 5). The curves display either a uctuation or descending
tendency in around 30 epochs. Afterward both approaches
achieved convergence and yielded similar EERs.
In Table 1, we report the error rates in three different cate-

gories when system is at overall EER decision point: the miss
detect and false alarm rates of in-target languages (IL-Miss
and IL-Fa), the false-alarm rate of OOL (OOL-Fa). We ob-
serve that minDCF offers a better OOL rejection while min-
DET achieves better balance between IL-Miss and IL-Fa. Both
minDCF and minDET optimization substantially reduced the
OOL-Fa rate.

Table 1. Error rate (in %) in 3 categories (IL-Miss/IL-
Fa/OOL-Fa) on NIST 03 and 05 LRE tasks.

NIST 03 NIST 05
Baseline 3.75/3.39/24.48 5.41/5.35/9.86
minDET 2.83/2.85/20.31 4.91/4.42/5.95
minDCF 3.33/2.47/18.75 5.26/4.28/5.10

Table 2 summarizes EERs and DCFs of the baseline and
the proposed approaches on NIST 2003 and 2005 LRE tasks.
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Fig. 1. EERs with increase of epochs in the training processes
of the minDET and minDCF approaches on NIST 03 and 05
tasks.

Both approaches yielded similar improvement over the base-
line. For minDET, relative EER and DCF improvements were
21.17% and 17.18%, respectively on the NIST 2003 task; they
were 14.29% and 12.56% on the NIST 2005 task. Figure 2 il-
lustrates DET curves of the two approaches. These curves
show that the proposed approaches effectively moved down
the baseline DET curves.

Table 2. EER/DCF (in %) comparison of Baseline, minDET
and minDCF on NIST 03 and 05 LRE tasks.

EER/DCF NIST 03 NIST 05
Baseline 3.59/3.55 5.46/6.69
minDET 2.83/2.94 4.68/5.85
minDCF 2.82/3.00 4.71/5.65

4. CONCLUSIONS

In this paper we proposed approaches for integrating perfor-
mance metrics, the detection cost function and the area un-
der the DET curve, into the model training. This strategy
is attractive because it offers a way to directly optimize the
language detection performance with evaluation measures of
interest. The two objective functions are optimized in train-
ing of backend GMMs in our PPR-VSM system. The GMM
parameters are embedded into the objective functions by us-
ing smooth approximations of the discrete metrics and reesti-
mated with the GPD algorithm. Experimental results on NIST
2003 and 2005 LRE tasks show that the two approaches effec-
tively improve the detection performance over the ML train-
ing approach and the optimization of the two metrics achieves
competitive results. Ongoing and future works include 1) a
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Fig. 2. DET curves of Baseline and two proposed approaches
(minDET and minDCF) on the NIST 03 and 05 LRE tasks.

comparison with optimization of other performance metrics,
2) applying proposed approaches to other classi ers, and 3) a
study of simultaneous optimization of different performance
metrics.
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