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ABSTRACT

Gaussian mixture models (GMM) have become one of the standard
acoustic approaches for Language Detection. These models are typ-
ically incorporated to produce a log-likelihood ratio (LLR) verifica-
tion statistic. In this framework, the intersession variability within
each language becomes an adverse factor degrading the accuracy.
To address this problem, we formulate the LLR as a function of the
GMM parameters concatenated into normalized mean supervectors,
and estimate the distribution of each language in this (high dimen-
sional) supervector space. The goal is to de-emphasize the directions
with the largest intersession variability. We compare this method
with two other popular intersession variability compensation meth-
ods known as Nuisance Attribute Projection (NAP) andWithin-Class
Covariance Normalization (WCCN). Experiments on the NIST LRE
2003 and NIST LRE 2005 speech corpora show that the presented
technique reduces the error by 50% relative to the baseline, and per-
forms competitively with the NAP and WCCN approaches. Fusion
results with a phonotactic component are also presented.

Index Terms— WCCN-LLR, NAP, ISV

1. INTRODUCTION

Spectral (a.k.a. acoustic) modeling belongs to one of the successful
approaches applied in automatic language recognition [1]. Recently,
Shifted-Delta Cepstra Features in conjunction with Gaussian Mix-
ture Models (GMM) [2] were demonstrated to be highly effective
both as individual components as well as in fusion with other mod-
eling approaches [3].

A major error source in GMM-based acoustic modeling for lan-
guage detection is Inter-Session Variability (ISV) which is also a sig-
nificant challenge in many other pattern recognition tasks (the term
“session” refers to a particular speech recording). A number of tech-
niques have been proposed to solve the problem, including feature
warping [4], and feature mapping [5]; as well as score compensation
techniques such as HNorm [6] and TNorm [7]. In [8], Kenny pro-
posed using factor analysis to compensate for speaker and channel
variability in GMM-based speaker verification. In [9], Hatch intro-
duced Within-Class Covariance Normalization (WCCN) to modify a
generalized linear kernel for Support Vector Machine (SVM) based
speaker verification. Nuisance Attribute Projection (NAP) [10] is an-
other successful approach to mitigate the cause of variability in the
SVM feature space by removing certain subspace components. Noor
and Aronowitz [11] defined a session-space and modeled the intra-
speaker subspace explicitly for language identification. In [12],
Castaldo proposed to alleviate ISV by compensating the observation
features for GMM based language identification.

The GMM formulation which simply sums up the likelihood of
Gaussian components has a number of underlying assumptions. One
assumption is that the feature vectors from a single session from the

language being tested are independent and identically distributed to
their corresponding language GMM. In one formulation, each lan-
guage GMM may be trained on a pool of utterances. Here ses-
sion variability and the pooling of utterances result in significant
mismatch and the loss of distribution sharpness which violates the
identically distributed assumption. Session variability compensation
may help to relax this assumption.

In this paper, we adopt the concept of WCCN/NAP and intro-
duce a derived algorithm to calculate scores, termed WCCN-LLR,
in order to compensate for ISV in GMM-based language detection.
We formulate the LLR as a function of the GMM concatenated mean
supervectors, estimate the distribution of each language in the high
dimensional supervector space and subsequently de-emphasize the
directions with the largest intersession variability. Experiments ob-
tained on the NIST LRE 2003 and 2005 databases demonstrate the
effectiveness of the new technique.

2. NAP ANDWCCN

Nuisance Attribute Projection (NAP), as introduced by Solomonoff
et al [10], is one of the successful ISV compensation approaches
for SVM-based speaker recognition. Firstly, the speaker models
are constructed via maximum-a-posteriori (MAP) adaptation of the
means of the UBM. Using an adapted model, a GMM supervector is
constructed by concatenating the means of the adapted mixture com-
ponents. The supervector can be thought of as mapping a variable
length utterance to a fixed-dimensional point in a high-dimensional
(supervector) space. A linear kernel based on the supervectors is
then used in an SVM classifier [13].
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where λj andΣj are the weight and covariance for the jth Gaus-
sian component of an M-component GMM; while ma

j and mb
j de-

note the adapted means for utterance a and b respectively.
The NAP approach constructs a modified kernel matrix that re-

moves subspace components that cause ISV:

K(ma
, m

b) = [Pe(ma)]t[Pe(mb)]

= e(ma)t
Pe(mb) (2)

where P = I−vvt is a projection matrix, v is a unit length vec-
tor indicating the direction being removed from the SVM expansion
space, and e() is the utterance to SVM feature space expansion.

Several criteria have been proposed for estimating P (and corre-
spondingly v) and one possibility is:

v
∗ = arg min

X
i,j

Wi,j‖Pe(mi)− Pe(mj)‖22 (3)
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where Wi,j represents the weight for utterance comparison i and j,
and can be selected in several different ways [13]. Another version
of the NAP approach (as used in these experiments) is to select the
subspace to be removed based on the within-class covariance infor-
mation.

Hatch et al [9] proposed the WCCN approach which achieved
significant improvements on SVM based speaker recognition. It con-
sidered P in Equation 2 as the inverse of a modified estimate of the
within-class covariance matrix of the supervectors. The difference
between WCCN and NAP is mainly how to weigh different direc-
tions. WCCN introduced a more general framework to split the fea-
ture space into two subspaces, and weighted them respectively. NAP
can be interpreted as a simplified WCCN where the weights are zero
for the directions in the nuisance subspace and one for the directions
in the remaining subspace. A detailed explanation of WCCN can be
seen in [14].

3. WCCN-LLR

3.1. Supervector LLR formulation

To present the supervector LLR formulation, the probability density
of a feature vector x given a GMM representation, Θ, is shown:

g(x;Θ) =

MX
i=1

ωiN (x;μi, Σi) (4)

where ωi, μi and Σi are the weight, mean and covariance for the ith
Gaussian component respectively.

The Log-Likelihood Ratio (LLR), calculated over an entire ut-
terance, X = {x1, x2, . . . , xT }, is one of the de-facto standard ver-
ification measures in state-of-the-art systems.
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where superscript s and u denote a specific language model and
UBM respectively. Moreover, only the mixture component means
are adapted from the UBM, while the weights and diagonal covari-
ances of the language model are kept the same as in the correspond-
ing UBM.

Let nkt denote the posterior probability of Gaussian k given an
observed xt for the UBM (i.e., nkt =

ωkN (xt;μ
u
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P
M
j=1

ωjN (xt;μ
u
j

,Σj)
). We

consider a lower bound on the LLR, L(X), as follows:
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Let us make the following assignments. The vec() operator is
used here to specify the column-wise concatenation of a matrix into
a single column vector form.
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This gives the following representation for the LLR bound:
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For simplicity, let us denote m = Σ−
1

2 (mx − μu) and μ =

Σ−
1

2 (μs − μu), then

L(X) =
1
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wherem is the vector containing the normalized sufficient statis-
tics of an utterance; which means each utterance becomes a vector
in this high-dimensional space. Hence, the LLR approximation is a
simple dot product in the high-dimensional space.

3.2. WCCN and LLR Combination

For estimating the correlation between the parameters across differ-
ent components, let us consider the detection task as a two class (tar-
get and non-target) classification problem in the high-dimensional
super-vector space. Suppose the distribution for each language (in-
cluding UBM) in the high dimensional space is Gaussian and with
shared covariance matrix S. Then the LLR for the vectorm is

L(m) = log
g(m;Θs)

g(m;Θu)
= log
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Notice that νs − νu = μ according to the normalization of μ.
By comparing Equations 14 with 15, the only difference between the
two measures is the precision matrix S−1. Via the covariance matrix
S in Equation 15 correlations between the parameters across differ-
ent components are incorporated into the calculation. However, the
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size of S in the formulation is too large to be robustly estimated.
Taking the settings used in these experiments in which the feature
dimension is 56 and the number of Gaussian components is 1024,
the resulting supervector dimension would be 57,344, with the num-
ber of free parameters in S being of the order of 109.This is clearly
an impractical size to provide a reliable estimate given the relatively
small number of utterances to train with. Instead of using Equa-
tion 15 directly, we exploit part of the information in this matrix in
two steps as follows.

Firstly, we assume that a diagonal covariance matrix can be esti-
mated relatively robustly (compared to estimating the parameters of
a full covariance matrix). The S matrix may be written in the form
of a diagonal covariance matrixD and a correlation matrix R.

S = D
1

2 RD
1

2 (16)

Secondly, we de-emphasize the directions with largest variance
by applying a mixed eigenvector and unit-residual representation for
R−1. This follows from the WCCN work proposed by Hatch [9].
The representations for R−

1

2 and R−1 are given accordingly:
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where Λ is a diagonal matrix containing the most significant eigen-
values and K represents the corresponding top few eigenvectors
of the (within-class variance-normalized) development data. Equa-
tions 17 and 18 each have two terms; the first relates to the space
described by the eigenvectors that are to be de-emphasized; the sec-
ond term relates to the residual subspace that remains untransformed.
The modified score function is now:
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This normalization is the same as WCCN with this variant being
constructed for a log-likelihood ratio function instead. Later on, we
refer to this technique as WCCN-LLR. Note that with this form of
subspace re-weighting, there is no guarantee that the function can be
represented as an equivalent log-likelihood ratio.

4. EXPERIMENTS

4.1. Speech corpus and baseline system

The development data set used in these evaluations is the CallFriend
corpus, which consists of 1800 utterances from 12 languages. In
these experiments, the system is trained on the first 5 minutes of
each utterance.

The described methods are evaluated on the 2003 and 2005
NIST Language Recognition Evaluation (LRE) test sets. The base-
line used in this study is a GMM/UBM system with mean-only MAP
adaptation. Each language model has 1024 Gaussian components.
The Shifted Delta Cepstral (SDC) features configured as 7-1-3-7
plus 7 static cepstral features are used, as described in [12].

4.2. Results

Table 1 shows Equal Error Rates (EER) corresponding to different
ISV compensation methods across evaluation sets and duration con-
ditions. The baseline represents the performance of a traditional

Table 1. Equal error rates across conditions
EER(%) lid05 lid03

30s 10s 3s 30s 10s 3s
Baseline 17.6 21.0 26.9 12.3 16.5 23.6
NAP-Kernel 13.6 22.3 33.6 7.4 16.4 28.4
WCCN-Kernel 11.5 19.5 30.6 5.7 14.4 26.1
WCCN-LLR 8.7 15.6 25.3 5.4 12.0 22.4
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Fig. 1. DET for NIST LRE-05 30 sec
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Fig. 2. DET for NIST LRE-03 30 sec

GMM/UBM-MAP system; the NAP-Kernel uses the NAP and a
kernel-based score; the WCCN-Kernel uses WCCN for ISV and a
kernel-based score; the WCCN-LLR (red curve) uses WCCN with
LLR-based scoring. Notice that WCCN-LLR achieves the best per-
formance among ISV compensation methods on each data set and is
the only technique outperforming the baseline for the very short (3
sec) tests.

Figures 1 and 2 show the DET curves obtained from the NIST
LRE 2003 and 2005 30 second test sets. The proposed WCCN-LLR
ISV compensation method achieved more than 50% relative error
reduction compared to the baseline system. Furthermore, results on
both data sets provide evidence of competitive performance of the
WCCN-LLR configuration with theWCCN and NAP kernels. Based
on these results, the effectiveness of the WCCN-LLR method may
be attributed to at least two potential sources: 1) the use of a soft-
weighted (WCCN-like) subspace removal and 2) the use of a LLR-
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Table 2. Fusion results
EER(%) lid03-30 lid05-30
Phonotactic 6.2 9.8
Acoustic 5.4 8.7
Fusion 3.4 7.0

related scoring metric, as opposed to a kernel-based metric.
Figure 3 shows the EER corresponding to compensating for a

different number of subspace dimensions for the NIST LRE 2005 -
30 second test set. The results indicate that WCCN-LLR performs
better than NAP-Kernel over the range of dimensions evaluated. The
EER curve for WCCN-LLR also seems smoother in contrast to NAP.
Another point is the considerable performance gain as a result of us-
ing just the first few dimensions across these methods. The EER
for the baseline on the 30-sec test is 19.9% and 17.6% without and
with T-Norm, respectively. For the WCCN-LLR case, when the sub-
space dimension is 12, the EER is 12.5% and 9.2%, without and
with T-Norm, respectively. The latter result is already close to the
best performance indicating that most of the impact for this type of
intersession variability model resides in the first few dimensions.
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4.3. Fusion Results

To demonstrate the effectiveness of the described acoustic technique
in an overall system, we also present fusion results with phonotac-
tics. For this purpose, a phonotactic language detector was used as
described in [15] and the fusion was performed as an equal-weight
linear combination of the acoustic and phonotactic scores.

The EERs for the acoustic and the phonotactic systems, and their
fusion are shown in Table 2. Notably, the performance of the acous-
tic system with ISV compensation, and the phonotactic system in
isolation are comparable. Their combination leads to a further sig-
nificant improvement, thus confirming previous observations [3].

5. CONCLUSION

In this work, we applied an intersession variability compensation
technique for GMM based language detection. We adopted the ideas
of NAP and WCCN, which was introduced for SVM-based speaker

verification, and extended this to be tested using a modified LLR-
based scoring function. Experiments show that the new ISV com-
pensation methods achieved improvements over the baseline and
performed competitively with the WCCN and NAP approaches.
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