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ABSTRACT 
 
This paper introduces a spoken language recognition system 
with a generative front-end and a discriminative backend. 
The generative front-end is built upon an ensemble of 
Gaussian densities. These Gaussian densities are trained to 
represent elementary speech sound units characterizing a 
wide variety of languages. We formulate the generative 
front-end in a form of sequence kernel. This sequence kernel 
transforms a spoken utterance into a feature vector with its 
attributes representing the occurrence statistics of the speech 
sound units. A discriminative support vector machine 
(SVM) then operates on the feature vectors to make 
classification decision. The proposed language recognition 
system demonstrates competitive performance on NIST 
1996, 2003 and 2005 LRE corpora. 

Index Terms— Language recognition, support vector 
machine, sequence kernel 

1. INTRODUCTION 

Automatic spoken language recognition is a process of 
determining the language spoken in an utterance. It has 
become an essential technique in applications, such as, 
multilingual speech recognition and spoken document 
retrieval [1]. One of the best known approaches to automatic 
spoken language recognition is the PPRLM (parallel phone 
recognition followed by language modeling) [1, 2]. In this 
approach, a set of phone recognizers are used to transcribe 
an input utterance into parallel sequences of phone tokens, 
one from each recognizer. Generative n-gram language 
models (LMs) are then derived for each target language to 
capture the statistics of the phone sequences generated by 
the PPR front-end. During recognition, a test utterance is 
first converted into phone sequences and then scored against 
the LMs. Another successful approach is the PPR-VSM 
(parallel phone recognition followed by vector space 
modeling) that replaces the generative n-gram LMs with 
support vector machines (SVMs) to exploit the advantages 
of a discriminative back-end [3]. 

The PPR front-end can be seen as a decoder that 
extracts relevant phonotactic information for language 
recognition. In this paper, we propose a simple front-end, 
where the elementary phonological units (i.e., speech sound 
categories) are now modeled with acoustically-defined 

Gaussian densities, instead of linguistically-defined phone 
recognizers modeled with hidden Markov models [1]. Our 
intention is to circumvent the need of laborious phonetic 
transcription in training the phone recognizers, while 
achieving competitive performance with the PPR approach. 
This idea was earlier explored in the framework of Gaussian 
mixture model (GMM) using the shifted-delta-cepstral 
(SDC) coefficients [4]. The long-term speech dynamic 
encoded in the SDC coefficients enables simple Gaussian 
densities in capturing phonotactic information essential for 
language discrimination. 

In this paper, we formulate the generative front-end in a 
form of sequence kernel. Used as part of an SVM [5], the 
sequence kernel explicitly maps variable length speech 
utterances into higher-dimensional vectors for discriminative 
classification. In this sense, the operation of our kernel is 
similar to the generalized linear discriminant sequence 
(GLDS) kernel proposed in [6], except that the GLDS uses 
polynomial expansion at the front-end. Our system employs 
an ensemble of Gaussian densities at the front-end and 
adopts a discriminative back-end, leading potentially to 
better language discrimination. 

We derive the sequence kernel from the generalized 
radial basis function (RBF) network and minimum squared-
error (MSE) training criterion [7]. We have used similar 
approach to derive another sequence kernel for speaker 
recognition with modest success [8]. Here, we refine and 
tailor the approach for language recognition. By means of a 
self-organized ensemble of Gaussian densities, the resulting 
sequence kernel is found extremely effective in capturing 
language-dependent information. We also present a more 
rigorous formulation of sequence kernel SVM and a fast 
technique for sequence kernel computation in this paper. 

2. SELF-ORGANIZED SOUND INVENTORY 
Spoken languages differ in the inventory of speech sound 
units used to produce words [1]. Although the frequency of 
occurrence and the order of these sounds appear in a spoken 
utterance differs from one language to another, common 
speech sounds are shared considerably across languages [3]. 
In view of this, a universal inventory of speech sounds can 
be established by combining those from a predefined set of 
languages, which we refer to as the basis languages. 

Consider that we have access to collections of speech 
samples for a predefined set of K basis languages, and the 
speech samples have been parameterized as sequences of 
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feature vectors. We can train a Gaussian mixture model 
(GMM) for each basis language kC , where 1,2,k = , K , 
in the following form: 

 ( ) ( ) ( )
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=x x , (1) 

where M denotes the number of Gaussian components in the 
mixture, and ( )| kP j C  is the mixture weight for the jth 
Gaussian component ( )|p jx ~ ( ),j jΣμ  with mean 
vector jμ  and covariance matrix j . Assuming equal 
priors, we can pool the basis GMMs in (1) to obtain a 
composite GMM in the following form 
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where ( )P j  are the mixture weights after renormalization 
such that all the weights sum to one, since we assumed 

( ) 1kP C K= . The index j now ranges from 1 to KM as 
there are KM distinct components in the resulting mixture. 

The GMM in (2) can be thought of to represent the 
underlying process that generates the multilingual data. The 
individual Gaussian components ( )|p jx  are trained to 
represent the underlying set of speech sound units (vowel, 
nasal, fricative etc.) in a self-organized manner. The weight 

( )P j  represents the a priori probability of occurrence of a 
particular sound in a spoken utterance. This viewpoint has 
long been postulated in the literature [9, pp. 719] and, in our 
case, further supported by the SDC coefficients that capture 
long-term spectral information across a large number of 
frames [4]. This is consistent with the PPR front-end where 
phonotactic tokenization is performed over multiple frames. 

3. SEQUENCE KERNEL DERIVATION  

In (2), we obtain an ensemble of Gaussian densities defining 
a universal inventory of speech sounds. We are now in the 
position to derive a sequence kernel that utilizes these 
density functions to characterize speech utterances. We 
motivate the approach based upon the generalized radial 
basis function (RBF) network and minimum squared-error 
(MSE) training criterion [7]. 

3.1. Generalized RBF network 

Using Bayes’ theorem, the set of KM Gaussian density 
functions in (2) can be written in normalized form as 
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Using this set of normalized Gaussian basis functions we 
form a generalized RBF network [7] as shown in Fig. 1. The 
output of the network can be represented in a compact form 
as 

 ( ) ( ) ( )
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n j j n n
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f w γ
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= =x x w x , (4) 

where [ ]1 2, , , T
KMw w w≡w  is the network weights 

vector, and ( ) ( ) ( ) ( )[ ]1 2, , , T
n n n KM nγ γ γ≡x x x x  is the 

vector of normalized Gaussian basis functions. The 

activations of the basis functions indicate the probabilities of 
the presence of corresponding speech sounds given an 
observation vector nx . Since each language has its own 
inventory of sound units, difference subsets of basis 
functions will be activated by feature vectors belonging to 
different languages. The network in Fig. 1 can therefore be 
trained to discriminate a target language from some 
competing languages depending on the activations of its 
basis functions.  

3.2. MSE discriminative training 

Consider a binary classification problem. The network 
weights tgtw  can be determined for a target language class 
by minimizing the following squared-error function [7] 

 ( ) ( ) ( )2 2

1 1
0

X ZN N
T T

n n
n n

J t
= =
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where the target language data { 1 2, ,X = x x },
XNx  is 

given a desired output value of ( ) /X Z Xt N N N= + , and the 
competing languages data { }1 2, , ,

ZNZ = z z z  a desired 
output value of 0. Taking the derivative of (5) and set it 
equal to zero, we obtain the following MSE solution  
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where  

 ( ) ( ) ( ) ( )1 1, , , , ,
X Z

T

N N≡ x x z z  (7) 

is the ( )X ZN N KM+ ×  data matrix with each row 
represents the activations of the KM basis functions in 
response to a given feature vector. 

The optimum weights tgtw  are now fully determined by 
the training data { },X Z  and the basis functions . Given a 
test sequence { }1 2, , ,

YNY = y y y , the output of the 
network averaged over the entire sequence is given by 

 ( ) ( ) ( )tgt tgt
1 1

1 1 yY NN
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n n
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f Y
N N= =
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Substituting (6) in (8), the output f can be expressed as a 
function of two sequences, X and Y, as follows 
 ( ), T

X Yf X Y = , (9) 

 
Fig. 1. A generalized radial basis function (RBF) network. 
Each basis function represents elementary sound units 
characterizing speech utterances. 
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where 

 ( )1 2
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are referred to as the characteristic vectors for the 
observation sequences X  and Y , respectively.  The matrix 

 is a diagonal approximation of a correlation matrix in the 
following form 

 
( )

T

X Z
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N N

≈
+

. (11) 

This approximation assumes that the outputs of the basis 
functions jγ  are uncorrelated, and greatly simplifies the 
matrix inversion and multiplication operations in (10). 

The elements of a characteristic vector collectively 
represent a histogram describing the occurrence statistics of 
speech sound units for a given speech utterance. Different 
languages would exhibit different patterns of histogram. 
This phonotactic information is used to discriminate a target 
language from other competing languages in our system. 

3.3. Probabilistic sequence kernel (PSK) SVM 

Equation (9) indicates that the generalized RBF network 
measures the similarity of a test sequence Y to a reference 
sequence X by computing the inner product of their 
characteristic vectors. Instead of simple inner product, an 
SVM can be used to define a hyperplane that separates X  
of the target language from those Z  of the competing 
languages. Such a hyperplane is described by a set of 
support vectors in the following form: 

 ( )
1

L
T

Y l l l Y
l

g t bα
=

= + , (12) 

where L denotes the number of support vectors l , b  is the 
bias, and the term l ltα  indicates the weight of the support 
vector l  in characterizing the hyperplane. Using (9) in 
(12), the sequence-comparing functionality pertaining to the 
RBF network can be written as part of the SVM, as follows 

 ( ) ( )
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l l l
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where the function ( ),lf X Y  is now referred to as the 
probabilistic sequence kernel (PSK), the purpose of which is 
to transform variable length speech utterances into 
characteristic vectors (KM-dimension in this case) for SVM 
classification.  

4. LANGUAGE RECOGNITION USING PSK-SVM 

The probabilistic sequence kernel (PSK) SVM, as shown in 
Fig. 2, consists of two major elements, namely, (i) front-end 
set of Gaussian basis functions, (ii) SVM model for each 
target language. To construct the front-end, we first identify 
a set of basis languages and train a GMM for each of them. 
The basis GMMs are then pooled together to form the front-
end bases as in (3). It should be mentioned that we select the 
basis languages according to the availability of training data, 
and may not necessarily need to include all the target 

languages to be recognized. This flexibility facilitates the 
system to be easily scaled-up for new target languages. 

To construct the back-end classifier, we first compute 
the normalization matrix  using speech utterances from all 
the target languages, and then transform all the utterances 
into characteristic vectors according to (10) and (11). We 
use a one vs. rest strategy in training the SVM models. As 
shown in Fig. 2, the characteristic vectors are assigned with 
appropriate label (i.e., +1 for target language, -1 for 
competing languages) for SVM training [5]. Notice that all 
SVM models are trained using the same set of characteristic 
vectors (with different labels assigned), which greatly 
reduces the computations. Further computation reduction is 
achieved by (i) assuming diagonal covariance matrices j  
for the Gaussian densities, (ii) evaluating only the top 
scoring Gaussian densities. This fast technique for the 
sequence kernel computation is detailed in the next section.  

5. EXPERIMENTS 

We conduct the experiments on the NIST 1996, 2003 and 
2005 language recognition evaluation (LRE) data for 30-
seconds trials. The task of the evaluation is to detect the 
presence of a hypothesized target language given a recorded 
telephony speech. There are 12 target languages for the 1996 
and 2003 tasks, and 8 for the 2005 task. The training data is 
drawn from the CallFriend corpus available from the 
Linguistic Data Consortium (LDC). 

We compare four systems, namely, GLDS-SVM, 
GMM, PSK-SVM, and PPRLM. The first three systems use 
SDC with (7, 1, 3, 7) configuration [10], which results in 
SDC vectors of 49 dimension. We follow closely the system 
setup in [6, 10] for the GMM and GLDS-SVM. Briefly, 
each target language is modeled with two gender-dependent 
GMMs with 2048 mixtures. We use polynomial expansion 
up to third order for the GLDS-SVM. The PPRLM uses 
three phone recognizers (Czech, Hungarian, and Russian) 
based on long temporal context developed by Brno 
University of Technology [2]. We used similar setup as in 
[2], except that the output scores are merged from the 
individual PRLM subsystems by taking their average. 

For the PSK-SVM system, we attain the front-end 
Gaussians from twelve basis languages, which are readily 
available from the CallFriend corpus. We first train an initial 

 
Fig. 2. Training of probabilistic sequence kernel (PSK) 
SVM for language recognition. 
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GMM with 2048 mixtures using a small fraction of data. 
The parameters of this GMM are then used to initialize the 
expectation-maximization (EM) algorithm in adapting to the 
twelve basis GMMs, one at a time. Since the basis GMMs 
are initialized with the same parameters, there exist one-to-
one correspondences among their Gaussian components. 
This property allows a fast computation procedure as 
follows: For each feature vector, the initial GMM is used to 
determine the top N Gaussians with higher likelihoods. 
Using this information on the basis GMMs, we evaluate the 
top N Gaussians, while the remaining Gaussians are assumed 
to have zero activation. We use N = 100 (approximately 5% 
of 2048) in the experiments. For this case, we achieve a 
faster computation with a factor of (12×2048)/(12×100 + 
2048)  7. 

The performance of the four systems is listed in Table I 
in terms of equal error rate (EER). The detection error 
tradeoff (DET) curves are shown in Fig. 3. It is evident that 
the performance of the PSK-SVM is consistently better than 
the GMM and GLDS-SVM on 1996, 2003 and 2005 LRE 
for the same SDC coefficients used. From Fig. 3, it can be 
observed that the PSK-SVM exhibits competitive 
performance to that of the PPRLM, and even outperforms 
the PPRLM at certain decision thresholds. The plots also 
show the fusion of the PSK-SVM and PPRLM. We use 
simple weighted sum rule in the score fusion. The optimum 
weights are first selected on the 1996 LRE, and used for 
2003 and 2005 LRE. The fused system work extremely well. 
It gives relative EER improvements of 42%, 41%, and 36% 
over the best system for 1996, 2003 and 2005 LRE, 
respectively.  

6. CONCLUSIONS 

We have proposed a novel generative front-end for 
characterizing speech utterances using an ensemble of 
Gaussian densities for language recognition. By exploiting 
the long-term speech dynamic of the SDC coefficients, the 
Gaussian densities represent underlying set of speech sounds 
characterizing different languages. Used as the bases in a 
sequence kernel, the Gaussian density functions map speech 
utterances into characteristic vectors for SVM classification. 
We have also introduced the concept of basis languages in 
constructing the generative front-end and a fast technique for 
sequence kernel computation. Language recognition 

experiments showed that the proposed method exhibits good 
performance consistently across the NIST 1996, 2003 and 
2005 LRE tasks. 

Table I: EER (%) performance of four systems on the NIST 
1996, 2003 and 2005 LRE for 30 seconds test durations. 

System 1996 2003 2005 
GMM 4.00 4.61 8.37 
GLDS-SVM 3.62 4.70 6.94 
PSK-SVM 1.72 2.98 5.48 
PPRLM 2.14 2.17 4.38 
PSK-SVM + PPRLM 0.99 1.29 2.79 
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Fig. 3. Performance of four systems on the NIST 1996 (left), 2003 (middle) and 2005 (right) LRE for 30-seconds trials. 
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