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ABSTRACT

One commonly used approach for language recognition is to con-
vert the input speech into a sequence of tokens such as words or
phones and then to use these token sequences to determine the tar-
get language. The language classification is typically performed by
extracting N -gram statistics from the token sequences and then us-
ing an N -gram language model or support vector machine (SVM)
to perform the classification. One problem with these approaches is
that the number of N -grams grows exponentially as the order N is
increased. This is especially problematic for an SVM classifier as
each utterance is represented as a distinct N -gram vector. In this
paper we propose a novel approach for modeling higher order N -
grams using an SVM via an alternating filter-wrapper feature selec-
tion method. We demonstrate the effectiveness of this technique on
the NIST 2007 language recognition task.

Index Terms— Language Recognition, Support Vector Ma-
chines

1. INTRODUCTION

Language recognition systems generally fall into two categories:
acoustic systems which model short term spectral characteristics of
speech and token systems which model high level features such as
words or phones. State-of-the-art systems typically include both
techniques to achieve optimal performance. In this paper, we focus
on a token based language recognition system which uses a phone
recognizer for generating the token sequences and a support vector
machine for classifying the target language.

Token-based SVM systems have been used in many speaker and
language recognition systems [1, 2, 3]. Sequence kernels are con-
structed by viewing a speech segment as a document of tokens. The
SVM feature space in this case is a scaling of co-occurrence prob-
abilities (or N -grams) of tokens in an utterance. This technique is
analogous to methods for applying SVMs to text classification [4].

In our prior work [5], we used the output of a speech recognition
system to generate sequences of words. We observed that certain
words (or keywords) were strongly indicative of a specific language.
For example, the phrase “you know” was a strong indicator that the
language was English. One limitation with this approach was that
the possible set of words for distinguishing between languages was
limited to the word lexicon of the underlying speech recognition sys-
tem.

In this paper, our token sequences are generated using a phone
recognizer. We then attempt to find keywords by selecting the N -
grams which discriminate the most between the different languages
for progressively higher orders of N . Unfortunately, this problem is
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difficult to solve directly, since the number of uniqueN -grams grows
exponentially as we increase the order. To alleviate this difficulty,
we propose a method that starts by selecting a relatively small set of
lower order N -grams and then using these sets to successively build
candidate lists of higher order N -grams.

The outline of the paper is as follows. In Section 2.1, we review
the basic architecture that we use for phone recognition and how it
is applied to the problem. In Section 2.2, we review the application
of SVMs to determining a target language. Section 3.1 describes a
feature selection method for SVMs. Section 3.2 presents our method
for constructing long context units of phones to automatically create
keywords. We use a novel feature selection approach that attempts
to find longer strings that discriminate well between classes. Finally,
in Section 4, we show the application of our method to a language
recognition problem. We show qualitatively that the method pro-
duces interesting keywords. Quantitatively, we show that the method
produces keywords which are good discriminators between classes.

2. PHONOTACTIC CLASSIFICATION

2.1. Phone Recognition

The high-level component of our system is a phone recognizer based
upon the Brno University (BUT) design [6]. The basic architecture
of this system is a three state monophone HMM system with a null
grammar. This system uses two powerful components to achieve
high accuracy. First, split temporal context (STC) features provide
contextual cues for modeling monophones. Second, the BUT rec-
ognizer makes extensive use of discriminatively trained feedforward
artificial neural nets to model HMM state posterior probabilities.

We developed an English phone recognizer using the BUT archi-
tecture and automatically generated STT transcripts on the Switch-
board 2 Cell corpora [7]. Training data consisted of approximately
10 hours of speech. ANN training was accomplished using the ICSI
Quicknet package [8]. The resulting system has 49 monophones in-
cluding silence.

The BUT recognizer is used along with the HTK HMM
toolkit [9] to produce lattices. Lattices encode multiple hypothe-
ses with acoustic likelihoods. We use the lattice to produce expected
counts of tokens and token N -grams.

Expected counts of N -grams can be easily understood as an ex-
tension of standard counts. Suppose we have a hypothesized string
of tokens,W = w1, · · · , wn. Then bigrams are created by grouping
two tokens at a time to form,W2 = w1 w2, w2 w3, · · · , wn−1 wn.
Higher order N -grams are formed from longer juxtapositions of to-
kens. The count function for a given bigram, di, is count(di|W2)
is the number of occurrences of di in the sequence W2. To extend
counts to a lattice, L, we find the expected count over all all possible
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hypotheses in the lattice,

count(di|L) = EW [count(di|W )] =
X

W∈L

p(W |L) count(di|W ).

(1)
The expected counts can be computed efficiently by a forward-
backward algorithm; more details can be found in Section 3.3
and [10].

A useful application of expected counts is to find the probability
of an N -gram in a lattice. For a lattice, L, the joint probability of an
N -gram, di, is

p(di|L) =
count(di|L)P
j
count(dj |L)

(2)

where the sum in (2) is performed over all unique N -grams in the
utterance. Note that the denominator in (2) is approximately constant
asN varies.

2.2. Discriminative Language Modeling: SVMs

Token-based class recognition using SVMs can be performed in
several ways [11, 3]. We focus on an approach which is similar
to [11, 2]. In [2], a token sequence, W = w1, · · · , wN , is modeled
using a bag-of-N -grams. For a sequence of tokens, (joint) proba-
bilities of the unique N -grams, dj , on a per conversation basis are
calculated, p(dj |W ). Then, the probabilities are mapped to a sparse
vector with entries

Djp(dj |W ). (3)

The selection of the weighting, Dj , in (3) is critical for good perfor-
mance. A typical choice has form

Dj = min

„
Cj , gj

„
1

p(dj |all)
««

(4)

where gj(·) is a function which squashes the dynamic range, and Cj

is a constant. The probability p(dj|all) in (4) is calculated from the
observed probability across all classes. We choose gj(x) =

√
x and

Cj = ∞.
The general weighting of probabilities is then combined to form

a kernel between two lattices, see [2] for more details. For two lat-
tices, L1 and L2, the kernel is

K(L1,L2) =
X

j

D2
j p(dj |L1)p(dj |L2). (5)

Intuitively, the kernel in (5) says that if the sameN -grams are present
in two sequences and the normalized frequencies are similar there
will be a high degree of similarity (a large inner product). If N -
grams are not present, then this will reduce similarity since one of
the probabilities in (5) will be zero. The normalization Dj insures
that N -grams with large probabilities do not dominate the kernel
function. The kernel can alternatively be viewed as a linearization of
the log-likelihood ratio [2].

Incorporating the kernel (5) into an SVM system is straight-
forward. SVM training and scoring require only a method of ker-
nel evaluation between two objects that produces positive definite
kernel matrices (the Mercer condition). We use the package SVM-
Torch [12]. Training is performed with a one-versus-all strategy. For
each target class, we group all remaining class data and then train
with these two classes.

3. DISCRIMINATIVE KEYWORD SELECTION

3.1. SVM Feature Selection

A first step towards an algorithm for automatic keyword generation
using phones is to examine feature selection methods. Ideally, we
would like to select over all possible N -grams, where N is varying,
the most discriminative sequences for determining the language of a
speech segment. The number of features in this case is prohibitive,
since it grows exponentially withN . Therefore, we have to consider
alternate methods.

As a first step, we examine feature selection for fixed N and
look for keywords with N or less phones. Suppose that we have a
set of candidate keywords. Since we are already using an SVM, a
natural algorithm for discriminative feature selection in this case is
to use a wrapper method [13].

Suppose that the optimized SVM solution is

f(X) =
X

i

αiK(X, Xi) + c (6)

and
w =

X
i

αib(Xi) (7)

where b(Xi) is the vector of weighted N -gram probabilities in (3).
We note that the kernel given in (5) is linear. Also, the N -gram
probabilities have been normalized in (3) by their probability across
the entire data set. Intuitively, because of this normalization and
since f(X) = w

t
b(X)+c, large magnitude entries inw correspond

to significant features.
A confirmation of this intuitive idea is the algorithm of Guyon,

et. al. [14]. Guyon proposes an iterative wrapper method for feature
selection for SVMs which has these basic steps:

• For a set of features, S , find the SVM solution with modelw.
• Rank the features by their corresponding model entries w2

i .
Here, wi is the ith entry ofw in (7).

• Eliminate low ranking features.
The algorithm may be iterated multiple times.

Guyon’s algorithm for feature selection can be used for picking
significant N -grams as keywords. We can create a kernel which is
the sum of kernels as in (5) up to the desired N . We then train an
SVM and rank N -grams according to the magnitude of the entries
in the SVM model vector, w.

As an example, we have looked at this feature selection method
for a language recognition task with trigrams (to be described in Sec-
tion 4). As a motivation for the applicability of Guyon’s feature se-
lection method, see Figure 1. The figure shows two functions. First,
the CDF of the SVM model values, |wi|, is shown. The CDF has
an S-curve shape indicating that there are a large set of small model
weights, and a small set of large model weights.

The second curve shows the equal error rate (EER) of the task
as a function of applying one iteration of the Guyon algorithm and
retraining the SVM. EER is defined as the value where the miss and
false alarm rates are equal. All features with |wi| below the value
on the x-axis are discarded in the first iteration. From the figure, we
see that only a small fraction (< 5%) of the features are needed to
obtain good error rates. This interesting result provides motivation
that a small subset of keywords are significant to the task.

4146



10−4 10−3 10−2 10−1 100 101
0

0.25

0.5

0.75

1

Threshold |w
i
|

C
D

F 
|w

i|

10−4 10−3 10−2 10−1 100 101
0

0.1

0.2

0.3

0.4

E
qu

al
 E

rr
or

 R
at

e

Fig. 1. Feature selection for a trigram language recognition task
using Guyon’s method

3.2. Keywords via an alternating wrapper/filter method

The algorithm in Section 3.1 gives a method for N -gram selection
for fixedN . Now, suppose we want to find keywords for arbitraryN .
One possible hypothesis for keyword selection is that since higher
order N -grams are discriminative, lower order N -grams in the key-
words will also be discriminative. Therefore, it makes sense to find
distinguishing lower order N -grams and then construct longer units
from these. On the basis of this idea, we propose the following algo-
rithm for keyword construction:
Keyword Building Algorithm

• Start with an initial value of N = Ns. Initialize the set, S ′
N ,

to all possible N -grams of phones for this N . For example,
S ′

3 would be the set of all possible trigrams (this is a relatively
small set for a phone decoder).

• Wrapper Step Apply the feature selection algorithm in Sec-
tion 3.1 to produce a subset of distinguishingN -grams, SN ⊂
S ′

N .

• Filter Step Construct a new set of (N + 1)-grams by juxta-
posing elements from SN with phones. Nominally, we take
this step to be juxtaposition on the left and right, S ′

n+1 =
{pd, dq|d ∈ Sn, p ∈ S1, q ∈ S1}.

• Set N ← N + 1, iterate the wrapper and filter steps to some
desired order N

• Output: SN

A few items should be noted about the proposed keyword build-
ing algorithm. First, we call the second feature selection process
a filter step, since induction has not been applied to produce the
(N + 1)-gram features. Second, note that the purpose of the fil-
ter step is to provide a candidate set of possible (N + 1)-grams
which can then be more systematically reduced. Third, several po-
tential algorithms exist for the filter step. In our experiments and
in the algorithm description, we nominally append one phone to the
beginning and end of an N -gram. Another possibility is to try to
combine overlapping N -grams. For instance, suppose the keyword
is some people which has the phone transcript s ah m p iy p l.
Then, if we are looking at 4-grams, we might see as top features
s ah m p and p iy p l and combine these to produce a new key-
word.

3.3. Keyword Implementation

The expectedN -gram counts were computed from lattices using the
forward-backward algorithm. Equation (8) gives the posterior prob-
ability of a connected sequence of arcs in the lattice where src nd(a)
and dst nd(a) are the source and destination node of arc a, �(a)is the
likelihood associated with arc a, α(n) and β(n) are the forward and
backward probabilities of reaching node N from the beginning or
end of the lattice L respectively, and �(L) is the total likelihood of
the lattice (the α(·) of the final node or β(·) of the initial node of the
lattice).

p(aj, . . . , aj+n) =
α(src nd(aj))�(aj) . . . �(aj+n)β(dst nd(aj+n))

�(L)
(8)

Now if we define the posterior probability of a node p(n) as p(n) =
(α(n)β(n))/�(L). Then equation (8) becomes:

p(aj , . . . , aj+n) =
p(aj) . . . p(aj+n)

p(src nd(aj+1)) . . . p(src nd(aj+n))
. (9)

Equation (9) is attractive because it provides a way of computing
the path posteriors locally using only the individual arc and node
posteriors along the path. We use this computation along with a trie
structure [15] to compute the posteriors of our keywords.

4. EXPERIMENTS

4.1. Experimental setup

The phone recognizer described in Section 2.1 was used to generate
lattices across a train and an evaluation data set. The training data
set consists of more than 360 hours of telephone speech spanning 14
different languages and coming from a variety of different sources
including Callhome, Callfriend, Fisher, Mixer and NIST 2007 eval-
uation development data. The evaluation data set is the NIST 2007
Language Recognition Evaluation data consisting of 7530 utterances
spanning the 3, 10 and 30 second conditions. We evaluated our sys-
tem for both the 30 and 10 second tasks under the NIST 2007 closed
condition which limits the evaluation data to 14 languages (Ara-
bic, Bengali, Chinese, English, Farsi, German, Hindustani, Japanese,
Korean, Russian, Spanish, Tamil, Thai and vietnamese). These are
the same conditions as the primary evaluation task for the NIST 2007
evaluation.

The training and evaluation data was segmented using an auto-
matic speech activity detector and segments smaller than 0.5 sec-
onds were thrown out. We also sub-segmented long audio files in
the training data to keep the duration of each utterance to around 5
minutes (a shorter duration would have created too many training
instances). For the wrapper step described in Section 3.2, the top
and bottom 600 ranking keywords for each target language in the
training data were selected according to the weights in each model.
After the filter step, this resulted in a total of 785,097 keywords for
the 4-gram, and a total of 970,890 keywords for the 5-gram. The
support vector machine was trained using a dual formulation which
requires pre-computing all of the kernel inner products between the
data points and using an alternate kernel which simply indexes into
the resulting kernel matrix. This approach becomes difficult when
the number of data points is too large, but is good for large feature
sets and parallelization.

4.2. Results (Qualitative and Quantitative)

To get a sense of how well our feature selection approach was work-
ing, we looked at the top ranking keywords from the English model
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rank phones keyword
1 SIL|Y|UW|N|OW <sil> you know
3 L|AY|K|K|SIL like <sil>
12 !NULL|SIL|Y|EH|AX <s> <sil> yeah
14 IY|HH|AE|AE|V I have
16 SIL|AE|AE|AE|N ???
19 SIL|AE|AE|N|D and
24 AA|R|R|SIL|!NULL are <sil> </s>
26 SIL|AY|D|OW|N <sil> I don’t
29 R|AY|AY|T|SIL right <sil>
37 P|IY|P|AX|L people
48 DH|AE|T|T|SIL that

Table 1. Top ranking keywords for 5-gram SVM

N 1 2 3 4 5
10sec 21.2 12.0 07.8 06.6 09.2
30sec 13.4 04.3 02.2 01.8 03.1

Table 2. English phone recognizer %EER for 10 and 30 second
NIST 2007 tasks

only (since our phone recognizer is trained using the English phone
set). Table 1 summarizes a few of the more compelling phone N-
grams (for 3, 4 and 5 grams), and a possible keyword that it cor-
responds to each one. Not surprisingly, we also noticed that in the
list of top-ranking key words there were many variations and partial
N-gram matches to what appeared to be the same keyword.

The equal error rate for our system on the NIST 2007 language
recognition evaluation is summarized in Table 2. The 4-gram sys-
tem gave a relative improvement of 15% on the 10 second task and
18% on the 30 second task, but despite the compelling keywords
produced by the 5-gram system, the performance actually degraded
significantly compared to the trigram and 4-gram systems. A com-
parison of using BUTs Hungarian tokenizer to our English tokenizer
is presented in Table 3 along with results using a standard trigram
language model (a standard 4-gram language model was not feasible
for us to run). We’ve also demonstrated a significant reduction in
EER by linearly fusing the English and Hungarian SVM scores for
both the trigram and the 4-gram. A comparable fusion system using
the standard trigram language model fused with a backend trained
on held-out dev data does not perform nearly as well. Finally, we’ve
presented the results for fusing the English and Hungarian 4-gram
SVM systems with the GMM/LFA acoustic system used in the 2007
NIST evaluation. These two systems fused together perform within
10% of the MIT/LL evaluation system results.

5. CONCLUSIONS AND FUTUREWORK

We presented a method for automatic construction of keywords
given a discriminative speech classification task. Our method was
based upon an successively building longer span keywords from
shorter span keywords using phones as a fundamental unit. The
problem was cast as a feature selection method and an alternating
filter and wrapper method was proposed. Results showed that rea-
sonable keywords and improved performance could be achieved us-
ing this methodology.
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