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ABSTRACT 
 
This paper presents a stream-based approach for unsupervised 
multi-speaker conversational speech segmentation.  
The main idea of this work is to exploit prior knowledge about the 
speaker space to find a low dimensional vector of speaker factors 
that summarize the salient speaker characteristics. 
This new approach produces segmentation error rates that are 
better than the state of the art ones reported in our previous work 
on the segmentation task in the NIST 2000 Speaker Recognition 
Evaluation (SRE). We also show how the performance of a 
speaker recognition system in the core test of the 2006 NIST SRE 
is affected, comparing the results obtained using single speaker 
and automatically segmented test data. 
 

Index Terms— Speaker modeling, speaker segmentation, 
speaker factors, eigenvoices, speaker clustering 

 
1. INTRODUCTION 

 
Speaker recognition often requires a pre-segmentation step to 
detect the regions in a conversation corresponding to a putative 
single speaker. Clustering these regions is a reasonable approach 
when the speaker turns are frequent and the duration of a turn 
possibly short, as happens in the CallHome Corpus collected by 
the Linguistic Data Consortium that was used in the 2000 NIST 
speaker recognition evaluation [1]. 
 This paper presents a stream-based approach for unsupervised 
multi-speaker conversational speech segmentation. It finds the 
number of speakers in a conversation and produces its 
segmentation results with a fixed latency compared to a real time 
speech audio stream. 
 In stream-based speaker segmentation there are at least three 
problems to be solved. First, Gaussian Mixture Models (GMMs) 
are commonly used for speaker segmentation, but short speaker 
turns do not allow reliable speaker models to be estimated [2]. 
Second, the detection of the conversation turns and the estimation 
of the speaker models require low complexity to cope with audio 
streaming. Two main approaches are used for this task. Speaker 
changes are detected using a sliding variable length analysis 
window and the Bayesian Information Criterion (BIC), as done for 
example in [3-4]. Alternatively, a preliminary blind segmentation 
is performed by analyzing signal slices of fixed length, as 
proposed for example in [2,5-7]. Finally, a good distance measure 
between models is necessary to decide the number of speakers in a 
conversation. Again the BIC criterion or the Cross Likelihood 
Ratio [8] can be used for speaker clustering.  

 The contribution of this work is an original solution for the 
first two problems. We draw on earlier work on eigenvoice speaker 
adaptation [9] and identification [10]. In particular, the main idea 
of this work is to exploit prior knowledge about the speaker space 
to find a low dimensional vector of speaker factors that summarize 
the salient speaker characteristics. These factors can be computed 
effectively using a small sliding window, and do not suffer the 
problem of data sparseness.  We use the speaker factors to perform 
a preliminary segmentation step, and to estimate speaker models 
by constraining them in a previously estimated linear subspace. 
These constraints make it possible to estimate a reliable model 
even with small amounts of data [10]. 
 Our approach performs a preliminary blind segmentation 
analyzing signal slices of fixed length. The length of a slice is 
chosen assuming that up to three speakers are present in every 
slice, and most frequently only two. The models of the putative 
speakers in the slice are rapidly synthesized using the estimated 
speaker factors. A speaker model estimated on the current slice 
becomes a new global model if it is far enough from the other 
global models. Otherwise, the slice frames related to the model 
contribute to the update of the nearest speaker global model. 
 This new technique produces segmentation error rates that are 
better than the state of the art ones reported in our previous work 
on the segmentation task in the NIST 2000 Speaker Recognition 
Evaluation. We also show that good results are obtained in the 
2006 NIST multi-speaker conversation tests, where we compare 
the verification performance using automatically segmented 
training data with the one obtained using single speaker data. 
 The paper is organized as follows: In Section 2 we briefly 
recall the eigenvoice approach. Section 3 describes the first step of 
our technique, based on the computation of speaker factors using a 
sliding window on an audio slice. Section 4 illustrates the 
segmentation step inside each conversation slice. Section 5 gives 
details of the process that clusters the speakers models detected in 
a slice with the speaker models already found in the audio stream. 
Experimental results are presented in Section 6 and some 
concluding remarks are given in Section 7. 

2. EIGENVOICES  
Our speaker models are GMMs estimated from a common GMM 
root model, the so-called Universal Background Model (UBM) [2]. 
The models are trained by adapting only the Gaussian means, and 
share with the other speaker models the remaining UBM 
parameters. A supervector that includes all the speaker specific 
parameters is simply obtained by appending the adapted mean 
value of all the Gaussians in a single stream. The same procedure 
allows the UBM supervector to be obtained. 
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 The idea behind the eigenvoice approach proposed in [9] for 
speaker adaptation is that a small number of basis vectors (the 
eigenvoices vectors) can be obtained offline by Principal 
Component Analysis from a large set of reference speakers, and 
that a small number of parameters in this subspace can summarize 
the speaker characteristics in the large supervector space. These 
parameters are the speaker factors. A supervector for a new 
speaker μs is modeled by a linear combination of the eigenvoices 
en (n = 1,…N) through the speaker factors according to: 
 

s UBM s sμ μ E × x   (1) 
 
where μUBM is the UBM supervector. Es a low rank matrix, 
including the N eigenvoice en vectors corresponding to the largest 
eigenvalues. Matrix Es allows projecting the speaker factors 
subspace in the supervector domain. The N-dimensional vector xs 
holds the speaker factors for the current speaker utterance. It is 
estimated to maximize the probability of the speaker model μs, 
given the observed data. The main advantage of such an approach 
is that the number of parameters that it is necessary to estimate is 
small. This allows robust models to be obtained using a small 
number of observations. 

In the experiments described in this paper, the UBM and the 
speaker GMMs consist of mixtures of 256 Gaussians, the 
observation vector includes 13 Mel frequency cepstral coefficients 
and their first derivatives, and the number of eigenvoices is limited 
to N=20. The eigenvoices were obtained performing Principal 
Component Analysis on a set of 1433 female and 1183 male 
speaker models, estimated on data coming from the multilingual 
Callfriend database, and from the Italian, Swedish, and Brasilian 
Portuguese SpeechDat corpora.   
 

3. SLICE PRE-SEGMENTATION  
 
Since the UBM and the factor loading matrix Es describing the 
speaker subspace are computed a priori, it is possible to 
characterize a speaker using only its speaker factors xs. For the 
sake of efficiency, in the pre-segmentation step we make use of the 
information summarized in xs directly, rather than exploiting it to 
synthesize a speaker supervector. 
 As in our previous approach, we perform a preliminary blind 
segmentation by analyzing successive audio slices of fixed length. 
The best results in our experiments were obtained by setting the 
size of the audio slice to 60 seconds.  
 The first step of our technique computes the speaker factors for 
each frame of the audio slice using a sliding window. The 
estimation of the factor x(t) is performed on a symmetric window 
centered on frame t. The size of the window depends on a trade-
off. The use of a large window increases the stability of the 
speaker factors, but also the probability of incorporating frames of 
different speakers. In our experiments the window size has been 
set to 100 frames. The speaker factors are estimated to maximize 
the probability of the observations with respect to the subspace 
represented by matrix Es as follows [9]:   

s
-1x = A b    (2) 

where the elements of matrix A and vector b are:  
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In these equations, T is the number of observation frames, M is the 
number of Gaussians in the supervector, mμ  and mı  are the mean 
and the diagonal covariance of the UBM respectively, and 

m to  represents the posterior probability of  Gaussian m at 

time t given the compete observation sequence. 
The speaker factors are computed incrementally, by removing the 
leftmost frame of the window and adding a new one to its right.  
The complexity of the process is thus limited to a small (NxN) 
matrix inversion and a matrix (NxN) by vector (Nx1) product  for 
each frame. 
 Figure 1 shows the first two parameters of the speaker factors 
computed with a sliding window of 100 frames on the first 60 
seconds of file haap.wav in the NIST 2000 Speaker Recognition 
Evaluation set. This slice includes the first part of the conversation 
between a female and a male speaker. In Figure 1(a) the color of 
the points, and the line width, are associated to the reference 
labels. It can be observed that the values of the speaker factors for 
a reference speaker are spread in a relatively large region rather 
than being centered on a single point. Due to the small size of the 
analysis window (1 second only), the speaker factor values are 
affected by the phonetic content of the window. However, the 
cluster of points related to a speaker is well separated with respect 
to the second speaker cluster. Thus, a simple Euclidean distance 
among speaker vectors can be used as an approximation of a 
distance between supervectors such as the Kullback-Leibler 
divergence [11]. 
 In this step we perform a preliminary segmentation assuming 
the presence of two speakers in a slice. The set of 6000 speaker 
factor vectors estimated for the current slice is used to estimate the 
two N-dimensional Gaussians that best fit the data. These 
Gaussians represent the models of two putative speakers in the 
speaker factors space. The color and line width in Figure 1(b) 
identify the cluster of points belonging to the Gaussians estimated 
on the same slice of Figure 1(a). A simple 2-state HMM using the 
estimated Gaussian models, with 0.9 and 0.1 self and transition 
probabilities respectively, allows the segmentation of each 
conversation slice to be performed by means of the Viterbi 
algorithm. Figure 1(c) shows the points associated with the 
putative speaker labels selected by the Viterbi segmentation 
process. 
   

4. SLICE SEGMENTATION  
 
 The second step of the algorithm aims at verifying the 
accuracy of the two speaker segmentation hypothesis. We compute 
a unique speaker factor vector x for all the slice frames, and two 
other speaker factors vectors, x1 and x2, using the frames assigned 
to each putative speaker by the previous segmentation step. Each 
speaker factor vector is projected back to the supervector model 
space by the eigenvoice matrix E using (1), to rapidly synthesize 
two speaker models and a “slice model”. Thus, our approach 
exploits the a priori information given by matrix E to create a 
speaker model from a small number of observation frames.  We 
then compute the log-likelihood ratio score  
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Figure 1: Plot of the first two parameters of the speaker factors 
computed with a sliding window of 100 frames on the first 60 
second slice of file haap.waw in the NIST 2000 Speaker 
Recognition Evaluation set.  The colors, and line width, identify 
the initial clusters (b), and the speakers using the reference labels 
(a) and the segmentation labels (c). 

Table 1: Segmentation errors on the SwitchBoard  2-speaker 
segmentation task 

Segmentation Errors Segment 
speakers Previous 

approach 
Speaker factor  

approach 
Female 11.4 %  8.4 % 
Male   7.0 % 6.8 % 

Mixed   4.9 % 4.2 % 
Total   7.6 % 6.2 % 

 

Table 2: Segmentation errors on CallHome data 

N. of 
speakers 2 3 4 5 6 7 

Errors (%) 8.7 15.7 15.1 20.2 25.5 29.8 
 

1 2
12

1 2

L L LD
n n

  (5) 

where Li is log-likelihood of speaker model i computed on the ni 
frames assigned to cluster i , and L is the log-likelihood of all the 
frames in the slice computed with the slice model. 
 If score D12, measuring the distance between the two models, 
is less than a threshold, the entire slice is assigned to a single 

speaker. Otherwise, at least 2 speakers are present in the slice, and 
we check for a 3-speaker hypothesis. The pre-segmentation 
process is performed again to find 3 speaker factor Gaussian 
models. A new Viterbi segmentation is obtained, and the log-
likelihood ratio score is computed using the three models 
according to:  

1* 2* 3*
123

1* 2* 3*

L L L L
D

n n n
           (6) 

 
where the log likelihood Li* and the segment length ni*  refer to the 
new 3 speaker segmentation. 
The final decision to assign either two or three speakers to the slice 
is taken based on the difference between D12 and D123. 
 

5. STREAM PROCESSING  
 
In the last step, the speaker models estimated in the current slice 
are compared with the models of the speakers detected in previous  
slices of the conversation. In particular, the slice segmentation 
process generates a temporal segmentation and a GMM model for 
each speaker detected in the current slice. In the streaming 
approach, the slice frames are no more used for segmentation 
purposes, only the models of speakers detected in the previously 
processed slices – the global models - are kept.  
 Since the global speaker models are adapted from the UBM 
models, they can be effectively compared with the models of the 
speaker detected in the current slice by using the Kullback-Leibler 
divergence as distance metric [11]. 
 For the sake of efficiency, the segmentation results of the 
current slice are not modified using the information provided by 
the global speaker models. We have experimentally verified, 
however, that a simple method to get slice and global speaker 
models better aligned consists in using larger overlapping slices. 
Using overlapping slices allows obtaining more stable results on 
segmentation tasks involving more than two speakers, while still 
coping with the streaming constraints.  
 In our experiments, the slice size is set to 90 seconds, but only 
the results for the first 60 seconds of each slice are retained. The 
next audio slice is obtained by appending the next 60 seconds of 
the conversation to the last 30 seconds of the previous slice. The 
segmentation is performed on this new slice, and the obtained slice 
speaker models are compared with the global models. A slice 
speaker becomes a new global model if no global model can be 
found that is similar to it, according to the Kullback-Leibler 
distance measure. Otherwise, the nearest global model is updated 
using the slice speaker model by means of MAP adaptation of the 
means only.  
 

6. EXPERIMENTAL RESULTS 
 
We report the results of our approach on the speaker segmentation 
tasks of the NIST 2000 evaluation both on the Switchboard and on 
the multilingual CallHome data [1].  All scores have been obtained 
using the scoring script seg_scoring.v2.1.pl provided by NIST, 
ignoring collar periods of 250 ms, as is usual for these tests. The 
segmentation was performed without knowing the number of 
speakers taking part in the conversations. 
Table 1 compares the segmentation error rates obtained on the 
SwitchBoard 2-speaker segmentation task using our previous 
approach, described in [7], and using the new approach based on 
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speaker factors. A reduction in the error rates of 18% is obtained 
by the streamed segmentation approach, which takes on average 
about 6% of the real time, on a Pentium Mobile 2.13 GHz system. 
These results are in line with to the ones reported in [1] for one of 
the best system participating in the NIST 2000 evaluation. 

The performance of our approach has also been assessed in the 
CallHome n-speaker segmentation subtask. Again our results, 
shown in Table 2, are comparable with the one presented in [1]. 

 
6.1. Speaker recognition experiments  
We assessed the quality of our speaker clustering procedure in the 
NIST 2006 Speaker Recognition Evaluation core test involving 
two wire (2w) recordings. In the four wire (4w) condition, each 
audio file in the enrollment and verification lists includes a single 
side of a conversation, i.e. the voice of a single speaker, whereas in 
the 2w condition a whole conversation between two speakers is 
supplied as a training or test audio file. We report here the results 
referring to the 4w training and the 2w testing condition. This test 
has the goal of producing the likelihood that one of the two 
speakers involved in a conversation is the target speaker.  
 To obtain a one-to-one comparison with the 4w test condition, 
we defined a new “unofficial” 2w test, by summing the two sides 
of all the recordings in the list of the core NIST 2006 1conv4w 
test. We performed the tests after preprocessing the summed audio 
files using our speaker segmentation approach that produces two 
audio tracks, each containing the voice of a single unknown 
speaker. Both audio tracks produced after segmentation are scored 
against the target model, and the best score is produced as the 
matching result. The bottom DET curve in Figure 2 refers to the 
results produced by the combination of a GMM and of a Phonetic 
GMM systems described in [12] on the 4w core test condition. The 
upper DET curve shows the performance obtained in this 
unofficial 2w test, including the effect of automatic segmentation. 
It is worth noting that a decision based on the best score of the two 
sides, even neglecting the segmentation errors, will produce less 
accurate results compared with the corresponding 4w tests, due to 
the increase of the probability of false alarms (FA). This is 
demonstrated by the results - represented by the middle DET curve 
in Figure 2 - obtained in the same tests, without segmentation, but 
taking into account both sides of the conversation and applying the 
best matching decision rule used for the 2w tests. This result 
highlights the impact of the anticipated increase of the FAs on 
system accuracy, even in the absence of automatic speaker 
segmentation. 
 Comparing the DET curves, it is interesting to observe that the 
main source of accuracy degradation is not the segmentation 
procedure, but the presence of both sides of the conversation in the 
trials. Further degradation of the results is due to the occurrence of 
overlapped speech in the summed 2w signals. Overlapped speech 
does not occur in the 4 wire condition. 
 Although the segmentation obtained with the new approach is 
more precise, the speaker recognition performance improvement is 
not statistically significant compared with our previous 
segmentation approach. 

 
7. CONCLUSIONS 

A new approach to unsupervised multi-speaker conversational 
speech segmentation has been presented. It has demonstrated its 
capability of detecting and segmenting conversations with 
unknown number of speakers. It exploits the a priori information 
given by a set of eigenvoices, estimated offline, to rapidly estimate  
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Figure 2: DET plot comparing the results of the 4w condition with 
the 4w but best of the two side condition (see text) and the 
segmented 2w condition. The legend labels are ordered by 
decreasing EER.  

a set of speaker factors on a sliding window, and to create reliable 
speaker model from a small number of observation frames. Good 
results have been presented for multi-speaker segmentation and 
verification of conversational speech using standard data and tools. 
The speaker recognition tests on the 2w condition show that the 
gap between the DET curves of the 4w and 2w test conditions is 
small. Moreover, automatic segmentation accounts for about a half 
of the system accuracy degradation, the other half can be imputed 
to the detection of a speaker on the 2 sides of a conversation. 
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