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ABSTRACT

Under severe channel mismatch conditions, such as training
with far-field speech and testing with telephone data, perfor-
mance of speaker identification (SID) degrades significantly,
often below practical use. But for many SID tasks, it is suffi-
cient to recognize an N-best list of speakers for further human
analysis.
We investigate N-best SID accuracy for matched (tele-

phone/telephone) and mismatched (far-field/telephone) train/test
channel conditions. Using an SVM-GMM supervector (GSV),
pitch and formant frequency histograms (PFH) and cross-channel
adaptation using cohorts, we reduced matched channel error
rate by over 25% relative to the baseline (GMM-UBM), for
top-1, and achieved mismatched N-best accuracy comparable
to the baseline.
Index Terms— Speaker identification, GMM, SVM, for-

mants, cohort speaker adaptation

1. INTRODUCTION
A typical Gaussian Mixture Model (GMM) based Speaker
Recognition (SR) system performs well under matched chan-
nel and low-noise conditions. However, variability between
training and testing speech drastically degrades performance
of both SR techologies, speaker verification (SV) and speaker
identification (SID). Dealing with speech variability is one of
the most challenging problems in SR [1]. During the last
decade, most of the research on robust SR was focused on
speech variability caused by different telephone channels: ISDN,
carbon-mic and cell. Augmenting SR with channel normal-
ization and more robust features introduced through SVMs
[2, 3, 4], enables adequate performance for telephone-based,
speech applications.
Severe speech variations, due to different recording envi-

ronments and microphones, are just starting to be addressed
[5, 1]. Under this type of severe cross-channel mismatch con-
dition, SR accuracy quickly deteriorates. In this paper, we are
looking at one type of mismatch, low-quality recordings, such
as far-field microphone speech recorded in noisy and rever-
berant rooms for training, with telephone speech for testing.
Our focus has been on improving SID for SCANMail,

a system that provides a graphical user interface to voice-

mail messages, displaying a rich transcription that serves as
an index into the original speech, along with additional in-
formation like the caller’s name and extracted phone num-
bers [6]. With the prevalence of VOIP technologies, some
of our customers have hands-free microphones, which pro-
duce low-quality, reverberant speech that is mismatched from
traditional telephone speech. Using the techniques described
in this paper we can now train SID models using any audio
source to match against incoming telephone-based voicemail
messages. This type of mismatch has also been investigated in
the area of forensic science [1], where speech from a recorded
telephone threat needs to be compared to the available micro-
phone recordings of a set of potential suspects.

Fortunately, in these and many other situations, the SID
system is one of a chain of analysis tools with human inter-
faces, and it is sufficient for the SID system to produce an N-
best list of potential matches. When the results are presented
in a rich user interface that enhances the N-best list with ad-
ditional metadata from other analyses, a human can quickly
assess the relevance of the candidate speakers, narrowing the
choices to the best possible matches.

In this paper we present an analysis of N-best SID under
matched and mismatched conditions. We demonstrate that a
cross-channel cohort adaptation scheme can significantly im-
prove SID accuracy and that, for an N-best list, it is compa-
rable to matched channel accuracy. We also show that new
features comprising pitch and formant histograms can im-
prove matched channel accuracy and greatly contribute to an
increase in performance under mismatched conditions.

Using a database of 770 speakers under matched condi-
tions, the baseline accuracy (GMM-UBM system) is 87% and
98% for top-1 and top-50, respectively. The SVM GSV-PFH
system increases the corresponding N-best accuracy to 92%
and 99%, respectively. When far-field data is used for training
and telephone data for testing, the cohort adaptation technique
increases the GMM-UBM N-best accuracy, from practically
zero, to 50% for top-50 candidates. Applying GSV-PFH fur-
ther increased the N-best accuracy to about 90% for top-50.
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2. TESTING AND TRAIN DATA DESCRIPTION

2.1. Telephone data
Existing datasets for SID proved to be inadequate to compre-
hensively evaluate our system. To properly validate the utility
of our SID system, we collected a large dataset of telephone
speech using an automated system that people accessed by
calling in from their home, office or cell phones. Each of our
770 participants answered multiple questions across 10 dif-
ferent general interest topics until they exceeded five minutes
of recorded speech. We processed almost 86 hours of col-
lected speech using algorithms that automatically segmented
the speech into utterance-like segments of approximately 15
seconds. We combined these utterances into one- and two-
minute training sets that were used to adapt a Universal Back-
ground Model (UBM). For testing of our baseline system, we
reserved an average of 25 utterances per speaker.
2.2. Far-field microphone data
To analyze mismatched train/test conditions, we collected speech
samples recorded on far-field microphones. Because this col-
lection was very time consuming, we selected a random sub-
set of 5% of the 770 speakers, and asked them to answer ques-
tions across the same general interest topics from the tele-
phone collection. We recorded these sessions with a distant
microphone in rooms with differing acoustic properties and
microphone placement. We then trained speaker models with
this microphone data and compared the top-N identification
accuracy against the corresponding telephone-based models
using the same telephone data for testing in both conditions.

3. GMM-UBM SID SYSTEM

Our baseline system is a text-independent SID system using a
1024-mixture UBM built from the speech of several hundred
speakers, unrelated to this task. We used AT&T’s Watson
speaker-independent ASR engine to recognize each utterance
and provide speech/non-speech segmentation. We then com-
puted spectral features every 10ms over a window of 50ms.
The basic acoustic features we used consisted of twelve cep-
stral coefficients derived from 12th order LPC and log-energy.
Together with their first and second derivatives, we formed a
39-component feature vector for each time frame. For the
cepstral mean subtraction and energy normalization, we ap-
plied a three-second look-ahead window. Finally, we gener-
ated the speaker-dependent GMMs using MAP adaptation of
the UBM means on the speech portion of each training utter-
ance. Additional details of model generation and likelihood
calculation for speaker identification matching scores are de-
scribed in [7, 6].

4. SUPPORT VECTORMACHINES (SVM) SYSTEMS

SVMs are becoming a standard technique in speaker recogni-
tion because of their inherently discriminative training prop-
erty, and the ability to easily combine different types of fea-
tures. In our system, we combine a continuous-value GSV

supervector with discrete-value pitch and formant histograms.
These distinct feature streams are separately preprocessed, as
described below, then combined with equal weights.

4.1. SVM-GMM supervector (GSV)
Our initial experiments compared the baseline GMM-UBM
system with an SVM system that incorporates a GMM-mean
supervector. For each speaker utterance, we adapted the means
of a 1024 mixture UBM using MAP adaptation, concatenat-
ing them into a 39*1024=39936 supervector (GSV). We stan-
dardized all features to a unit variance on the training set, a
widely used technique in SVMs that gives equal importance
to each feature. Optimization of a soft-margin SVM includes
the choice of the metaparameter C, which weights the rela-
tive importance of misclassification on the training set com-
pared to the regularization (margin) term. In the case of lin-
ear SVMs, considerable experimental evidence suggests that,
provided the input samples are normalized to 1, C = 1 is a
good value to start with. In practice, we found that normaliz-
ing to 1 saved us considerable time, as our first choice C = 1
yielded the best performance on a validation dataset.

4.2. GSV-PFH: GSV and pitch/formant histograms
Pitch and formants are basic speech and speaker properties
and they have been successfully employed in SID from the
early days of the field [8] to most recently in [9]. Formants
are well defined only in vowel and vowel-like speech regions.
Even in those regions, their accurate and continuous estima-
tion is difficult, thus stand-alone formant-based SID systems
are inferior to well-established cepstrum-based systems. Fun-
damental frequency (F0), which is a channel-independent fea-
ture, is not preserved in cepstral coefficients. Though formant
frequencies and bandwidths are modeled by cepstrum, only
formant frequencies are robust to channel characteristics and
noise, especially in the telephone 300-3500Hz region that is
common to all speech channels.
Formant frequencies for each phone carry speaker char-

acteristics. In a particular speech sample, formant frequency
distribution histograms also characterize the phonetic speech
content, representing a crude speaker-dependent language model.
Dynamic pitch and formant properties are modeled by his-
tograms of their first derivatives.
In our current system, we compute pitch and formant fre-

quency supervectors (F0123) every 10 ms (using Xwaves) for
voiced speech. The total size of F0123 supervector is 2866
and its components are F0, estimated in 50-450Hz range and
quantized with 2Hz resolution (201 values), and dF0, quan-
tized with 4Hz resolution (101 values kept). Respective val-
ues for F1 are: 100-1250Hz, 2Hz (576), 5Hz (231). For F2:
350-3250Hz, 3Hz (968), 5Hz (387). For F3: 1350-3350Hz,
10Hz (201), 2Hz (201). Adding PFH supervector increases
the size of the original GSV by 7% only.
Using histograms as input to SVMs was first studied for

image histogram classification problems [10]. For distribution-
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type supervectors, the Hellinger distance approximates the
KL divergence between two probability distributions better
than the Euclidean distance. The Hellinger distance simply
amounts to the Euclidean distance where feature values are
replaced with their square roots. As with image histogram
classification problems [10], this simple transformation sig-
nificantly improved our results.

In our current system, we first concatenated all pitch and
formant histograms into a large histogram (PFH) supervector.
Then, we combined the GSV and PFH supervectors into a sin-
gle supervector. By tuning the weights for GSV and PFH, we
were able to generate a minor improvement in SID accuracy.
But, for generality, we continued to use equal weights.

5. CROSS-CHANNEL COHORTS FOR TARGET
SPEAKER ADAPTATION

5.1. Filtering and noise equalization

To mitigate severe channel mismatch conditions, we inves-
tigated the utility of adapting our microphone-based speaker
models to the telephone test data using speaker cohorts from
the telephone-based speaker models. Ideally, we would like to
have a significant number of speakers recorded under identi-
cal far-field microphone conditions (same room, microphone
and microphone distance) to determine cohorts within each
sub-group of speakers. With such data, we can assume that
cohorts in the matched far-field condition will also be cohorts
in the telephone condition.

Since we have not yet collected ample microphone data,
we need to find cohorts within the telephone data for each mi-
crophone speaker. To reduce the microphone and telephone
data mismatch, we had to perform several pre-processing steps.
We filtered microphone speech using amicrophone-to-telephone
filter that approximated the difference between the microphone
and telephone transfer functions. Then, we further processed
each utterance by applying a Wiener filter estimated from the
utterance-level background noise and adapted every 10ms.

The average signal-to-noise ratio (SNR) of the telephone
speech was 26dB, which is much higher than the SNR of
microphone speech even after the Wiener filter was applied.
In order to reduce the SNR difference, we added fixed room
noise computed from average microphone recordings across
room types, to bring the utterance SNR up to about 20dB.
Since some of the microphone recordings contained a notice-
able echo, we experimented with room reverberation simula-
tion on the telephone speech to enhance cohort selection, but
found no additional gains.

5.2. Cohort selection procedure
To select cohorts using our hybrid datasets, we first trained
GMM-UBM models using pre-processed telephone speech
for each of the 770 speakers, excluding the 36 speakers that

we also had microphone data for. We filtered the training ut-
terances for each of the 36 microphone-trained speakers as de-
scribed above, then scored the utterances against all telephone
models, using Maximum Likelihood (ML). For each speaker,
we sorted the models based on the number of closest matched
utterances and selected the first model that had at least 80%
top-1 accuracy to be the best cohort. Selecting a model with
high accuracy is essential since the speakers with low-quality
telephone data were often good matches for the microphone
speech model but were not desirable for adaptation. This co-
hort estimation has already proved valuable in increasing the
accuracy of our SID system, but we will continue to focus
on improved algorithms for finding better adaptation-cohorts,
under matched and mismatched channel conditions.

6. EXPERIMENTAL RESULTS

6.1. SID results on matched, telephone/telephone data
Our initial results in the matched condition showed predictably
high accuracy. Figure 1 contains the text-independent N-best
SID results on our set of 770 speakers for matched (tele-
phone/telephone) channels for the GMM-UBM and the SVM
system. The baseline accuracies of the GMM-UBM system
are for one and two minutes of training. When increasing
training data from one minute to two minutes, the error rate
reduction is 50% for the first choice, and 70% for the top-10
and larger lists. Training with larger amounts of speech data
results in minimal additional improvement.

Using an SVM classifier, trained on GMM means only,
reduces the error rate for the first candidate by 25% and over
50% for top-5 and larger lists. The error reduction rate for
one-minute and two-minute trained systems is essentially iden-
tical. When the two-minute trained SVM classifier is aug-
mented with pitch and formant frequencies, the error rate is
further reduced by about 14%.

Fig. 1. ML vs SVM comparison of N-best speaker inclusion
rate for one and two minutes of training data
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6.2. SID results on mismatched channels
For the mismatched condition, we compared telephone test
data to a composite dataset consisting of the 36 far-field mi-
crophone speaker models, adapted with twominutes of speech
from the corresponding telephone cohort and the remaining
734 telephone speaker models. Figure 2 contains a graph of
these results. The top curve shows the ultimate matched chan-
nel (telephone/telephone) conditions for these 36 speakers -
in the set of 770 speakers. The lowest curve (GMM-Cohort
ML-test) shows the ML-derived results using cohort-adapted
models, instead of telephone models, for the set of 36 speak-
ers. The improvement in N-best accuracy is impressive con-
sidering that the N-best accuracy for un-adapted models (with
all signal processing above) only reaches 10% (not shown in
the graph).

Supervectors for SVM classifiers were calculated for each
target speaker microphone utterance and each of its cohort
telephone training utterances. When the SVM classifier was
used with either adapted GMMmeans orF0123 features alone,
the recognition accuracy for each feature stream was below
the accuracy of the GMM-ML accuracy. When both GMM
means andF0123 were combined with equal weights, the SVM
classifier significantly outperformed the GMM-ML system as
shown in Figure 2 with error reduction going from 14% for
top-1 to over 60% for top-15. We found these results very
promising and believe that a better cohort selection algorithm
will yield further improvements.

Fig. 2. ML vs SVM error with cohort speaker adaptation

7. CONCLUSIONS
In this paper we have shownN-best results for text-independent
SID under matched train/test (telephone/telephone) and severely
mismatched (far-field/telephone) channels on a standard GMM-
UBM system and SVM system that combines the GMM-UBM
supervector with pitch and formant histogram supervectors.
We proposed and tested cohort’s matched channel speech to
adapt target speaker models that are trained on the mismatched
speech only. For the scenario we are focusing on, an N-best

list presented in an interface that integrates external metadata
allows users to quickly locate the best speaker match. Future
work will focus on better cohort selection algorithms and a
robust feature space to obtain more robust cohort selection, to
ensure that cohorts selected under one channel condition are
valid cohorts under test/target channel conditions.
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