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ABSTRACT 

 
Nuisance attribute projection (NAP) was successfully 
applied in SVM-based speaker verification systems to 
improve performance by doing projection to remove 
dimensions from the SVM feature space that cause 
unwanted variability in the kernel. Previous studies of NAP 
were focused mainly on linear and generalized linear kernel 
SVMs. In this paper, NAP in nonlinear kernel SVMs, e.g. 
polynomial or Gaussian kernels, are investigated. Instead of 
doing explicit feature expansion and projection in high-
dimension feature space, kernel principal component 
analysis is employed to find nuisance dimensions; and, NAP 
is carried out implicitly by incorporating it into some 
compensated kernel functions. Experimental results on the 
2006 NIST SRE corpus indicate the effectiveness of such 
nonlinear kernel NAP. Compared with linear NAP, 
nonlinear NAP with Gaussian kernel obtained about 11% 
relative improvement in Equal Error Rate (EER). 
 

Index Terms— supporting vector machines, kernel 
principal component analysis, nuisance attribute projection, 
speaker location, speaker recognition. 
 

1. INTRODUCTION 
 
In recent years, support vector machines (SVMs) have 
become one of the most important and widely used 
classification techniques in the field of speaker recognition. 
In [1], Nuisance Attribute Projection (NAP) was developed 
to do projection to remove dimensions from the SVM 
feature space that are irrelevant to the classification 
problem. Through NAP, intersession or channel variability 
(due to microphones, acoustic environments, etc.) can be 
reduced to improve speaker verification performance [1]–
[3].  

Former studies of NAP were mainly focused on linear 
and generalized linear kernels, in which nuisance 
dimensions are found and projected out directly in the SVM 
feature space. In this paper, NAP in nonlinear kernels, e.g. 
polynomial or Gaussian kernels, are studied. For these 
nonlinear kernels, the feature space is derived by some 

nonlinear transformation of input variables, and the 
dimension of transformed feature space can be very high or 
even infinite, e.g. for Gaussian kernel. In these cases, 
finding nuisance attributes and doing NAP directly in the 
feature space would incur possibly expensive 
representational and computational cost. To solve these 
problems, in this paper nuisance attributes in nonlinear 
kernels are found out through kernel principal component 
analysis (kernel PCA [4]); and, NAP projection is carried 
out implicitly by incorporating it into some compensated 
kernel functions. 

In this study, the input variables to SVMs are derived 
through anchor modeling [3] in which utterances are scored 
against a set of reference speaker models to determine its 
corresponding location vector in the space of reference 
speakers. The derived representation is called speaker 
location vector, and the SVMs used to classify these 
location vectors are referred as “location SVMs” in this 
paper.  

This paper is organized as follows. In Section 2, we 
describe briefly the concepts of anchor models and speaker 
location. In Section 3, we discuss NAP and present how to 
do NAP in nonlinear kernels through kernel PCA. In 
Section 4, we report experimental results on the 2006 NIST 
speaker recognition evaluation (SRE) corpus. We end with 
conclusions and future work in Section 5. 
 

2. ANCHOR MODELS AND SPEAKER LOCATION 
 
In this study, speaker location vector derived from anchor 
modeling is fed into SVMs as input variables, which is 
represented by the following vector, , [3], [5], v

 1 2 ,
T

El l lv x x x  (1) 

where T  stands for vector transpose , ; 1, 2, ,i i E  is 
a set of well trained reference speaker models (called 
anchor models), which are modeled as Gaussian Mixture 
Models (GMMs) and MAP adapted from a Universal 
Background Model (UBM) [6]; il x  is the normalized 

log-likelihood of the speaker utterance data x  (of  T
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acoustic feature vectors) for the i-th anchor model, i , 
relative to the UBM, UBM , i.e.,  

 1 log .i il p p
T

x x x UBM  (2) 

 
3. NUISANCE ATTRIBUTE PROJECTION IN 

SUPPORT VECTOR MACHINES 
 
In the standard formulation, an SVM, , is given by  f v

 1

1

,

, ,

M

i i
i

M

i i
i

f k b

b

v v v

v v
 (3) 

where  is a kernel function and 1 2,k v v v  is a feature 
transformation function. The relationship between the 
feature transformation  and the kernel function  is that k

 
1 2 1 2

1 2

, ,

,T

k v v v v

v v
 (4) 

i.e., the inner product in the transformed feature space can 
be realized by the kernel function over input variables. This 
property facilitates SVMs to do implicit feature 
transformation with kernel function. 

The  and b , ; 1, ,i i iv M  are obtained through a 
training process that maximizes the margin between two 
classes (positive vs. negative). SVMTorch is used as SVM 
trainer in our experiments [7]. 

In the application of SVMs for speaker verification by 
location in the space of reference speakers, an SVM is 
trained for each target speaker using the location vectors of 
the speaker’s enrollment utterances as positive examples, 
and the location vectors of utterances in some development 
set as negative examples. 
 
3.1. Nuisance Attribute Projection (NAP) 
 
In our application with NAP for speaker verification, it aims 
to find a projection matrix, , which is able to 
filter out nuisance attributes (e.g. session/channel 
variability) in the feature vectors and to pull together 
features from the same speaker in the projected subspace. 
The matrix  used in NAP projection is found by 
minimizing the average cross-session distances [1]: 

T
m mP I U U

mU

 
2

,
,

,d
i j i j

i j

Q M P Pv vd  (5) 

where  are  feature vectors derived 

from the development set, and 

; 1, ,d
i i nv n

M  is a weight matrix whose 
elements, ,i jM , evaluate the cost of disparity between 
projected feature vectors. In this study, M  is set to be: 

  (6) ,

1,   if  and , are from the same speaker
.

0,  otherwise

d d
i j

i jM
v v

As shown in [1], the objective function in (5) is 
minimized by m  eigenvectors with largest eigenvalues of 
the symmetric eigenvalue problem: 
 ,T

m mAZ M A U U  (7) 

where the matrix Z M diag M M1 ,  is the 

column vector of all ones,  is an operator of forming 
a diagonal matrix from a vector, and 

1

diag

1 2, , ,d d d
nA .v v v  

 
3.2. Nonlinear Kernel NAP 
 
For nonlinear kernels, to solve (7) directly in the 
transformed feature space would involve matrix 
factorization in high-dimensional space (e.g. for high order 
polynomial kernels which take into account the correlation 
among input variables) or integral equation in infinite 
dimension space (e.g. for Gaussian kernel). Hence, instead 
of doing eigenvalue analysis in the high (or infinite) 
dimensional transformed feature space directly, kernel PCA 
is employed as follows. We begin by factoring Z M as, 

 1 2 1 2 ,Z M Z Z  (8) 

where 
1 2 1 21 2Z diag M diag M M1 1 . Then, 

equation (7) becomes 
 1 2 1 2 .T

m mAZ Z A U U  (9) 
It can be observed that  lie in the span of the columns 

of 
mU

1 2AZ ; i.e., there exists matrix  such that n m mY
 1 2 .mU AZ Ym  (10) 
After substituting (10) into (9), we get 
 1 2 1 2 1 2 1 2 .T

mAZ Z A AZ Y AZ Ym  (11) 
Multiplying both sides with 1 2 TZ A , we can deduce from 

(11) that  can be found by m  eigenvectors with largest 
eigenvalues of the symmetric matrix, 

mY
1 2 1 2TZ A AZ , i.e, 

 1 2 1 2 .T
m mZ A AZ Y Y  (12) 

For calculation of the above symmetric matrix, 
1 2 1 2TZ A AZ , the elements in TA A  are the inner products of 

the feature vectors in the development corpus and can be 
calculated through the kernel function, i.e., 

 ,
,

, ,

T
i ji j

i j

A A

k

v v

v v
 (13) 

where 
,

T

i j
A A  stands for the entry in row i and column j of 

TA A . 
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We normalize columns in  to ensure that 
corresponding eigenvectors in  are orthonormal in the 
feature space. Combining (10) and (12), this requirement 
translates into the following normalization condition, 

mY

mU

  (14) .T
m mY Y I

With kernel PCA, the eigenvalue analysis problem in the 
high-dimensional feature space is reduced to the eigenvalue 
problem of 1 2 1 2TZ A AZ  whose size is , i.e. the number of 
features in the development set; and, calculation can be 
done through kernel functions over input variables without 
resort to explicit feature transformation in the high 
dimensional feature space. 

n

After obtaining the nuisance dimensions, the original 
nonlinear kernel function is compensated by incorporating 
NAP as 

 
1 2 1 2

1 2 1 2

1 2 1 2

, ,

, ,

, ,

NAP

T T
m m

T T
m m

k P P

U U

k U U

v v v v

v v v v

v v v v .

 (15) 
Substituting (10) into (15), we get that 

 1 2 1 2
1 2 1 2 1 2, , T T

NAP m mk k Z Y Y Zv v v v v v ,

n

.r

 (16) 
where can be calculated through kernel function as iv

  (17) 1 2

1 2

, , ,

, , , , , , .

TT
i i

T d d d
i

d d d
i i i n

A

k k k

v v

v v v v

v v v v v v

Again, we find that the NAP can be carried out implicitly by 
incorporating it into some compensated kernel functions 
without projecting feature vectors in the high-dimensional 
feature space directly. We note that a similar idea was also 
explored for processing some high-dimensional features 
efficiently with NAP in high-level speaker recognition [9]. 
 

4. EXPERIMENTAL RESULTS 
 
In this section, we report speaker verification experiments 
by location SVMs with linear and nonlinear kernel NAP. 
Section 4.1 presents some general experiment setup 
information about the task, corpora, features and kernel 
configuration. The results of these experiments are 
discussed in Section 4.2. 
 
4.1. Experiment Setup 
 
Speaker verification experiments were conducted on the 
2006 NIST SRE corpus [8]. We focused on the single-side 1 
conversation train, single-side 1 conversation test task. This 
task involves 3,612 true trials and 47,836 false trials. 
Enrollment and testing utterances contain about 2 minutes 
of pure speech after some voice activity detection. 

Totally 500 reference speakers (230 male and 270 
female speakers) are selected from Switchboard I and II 
corpora. They are used as anchor models in our 
experiments. A subset of the 2004 NIST SRE corpus is used 
as the development set. Location vectors of utterances in the 
development set are calculated as negative examples in 
SVM training; there are a total of 1790 background location 
vectors from 321 speakers. These background location 
vectors are also used as development set for NAP. For the 
cepstral features used for anchor modeling, PLP is 
calculated every 10 ms using a 25ms Hamming window. 
HLDA, RASTA, feature mapping and histogram 
equalization (HEQ) are applied to improve channel/noise 
robustness of feature and to facilitate GMM modeling [3]. 

Fig.1 EER vs. number of nuisance attributes projected out in 
linear, polynomial and Gaussian kernels 

Besides linear kernel, two nonlinear kernels are 
investigated: 

 In the first case, polynomial kernel is used, i.e., 
  (18) 1 2 1 2,

dTk sv v v v

In the following experiments, s , and  are set to 
be 1, 1 and 2 respectively. 

r d

 In the second case, Gaussian kernel is chosen, i.e., 
 2 2

1 2 1 2, expk v v v v .  (19) 

In the following experiments,  is set to be 2. 
 

4.2. Results 
 

In Fig.1 and Fig.2, we summarize the Equal Error Rate 
(EER) and NIST Detection Cost Function (DCF) results of 
location SVMs with linear, polynomial and Gaussian 
kernels respectively. The baseline systems for each kernel 
configuration correspond to those without NAP, i.e., the 
number of nuisance attributes projected out is zero. From 
these figures, we can see that nonlinear kernel NAP could 
filter out some nuisance attributes in nonlinear kernels to 
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significantly improve speaker verification performance as 
well as conventional NAP for linear/generalized linear 
kernels. These figures also show that if too many 
dimensions are identified as nuisance dimensions and 
projected out, the discriminative capability of resultant 
feature would be reduced which would degrade speaker 
verification performance. In our experiments, the optimal 
number of nuisance attributes for two nonlinear kernels is 
128 while it is 32 for the linear kernel. Under their 
respective optimal settings, the nonlinear NAP with 
Gaussian kernel obtained about 11% relative improvement 
in EER over the linear NAP. 

In the second set of experiments, we compared doing 
nonlinear kernel NAP directly against a two-stage approach 
to applying NAP in nonlinear kernels. In the two-stage 
approach [10], NAP was carried out linearly over the 
original input variables and the NAP projected variables 
were fed into nonlinear kernel SVMs for classification 
purpose. The EER and DCF results were summarized in 
Table 1. We can see that although the two-stage way could 
improve verification performance over the baseline 
nonlinear kernel SVMs, the proposed direct nonlinear 
kernel NAP is more effective by closely matching the 
nuisance attributes projected out with the underlying 
nonlinear kernel. We also conducted experiments, in which 
linear NAP over input variables and nonlinear kernel NAP 
were cascaded, but did not see further improvements over 
using nonlinear kernel NAP alone. 
 

5. CONCLUSION 
 
In this paper, nuisance attribute projection for general 
nonlinear kernel SVMs is presented. Through kernel PCA, 
the nuisance dimensions can be identified without resort to 
explicit feature transformation; and, the NAP projection can 
also be done implicitly through incorporating it into the 

compensated kernel functions instead of doing high-
dimensional feature projection explicitly. The complexity of 
the proposed method depends only on the size of 
development data. Speaker verification experiments on the 
2006 NIST SRE corpus demonstrate that such kind of 
nonlinear NAP can filter out session or channel variability 
in nonlinear kernels (e.g., polynomial or Gaussian) and 
significantly improve verification performance. 
Comparisons of linear and nonlinear NAP with more 
extensive data and in other tasks are planned in future work. 

Table 1. Comparison of direct nonlinear kernel NAP against 
combining linear NAP and nonlinear kernels in a two-stage 
way 

Kernel Type EER(%) DCF(x10)

Polynomial Kernel 12.62 0.5671 
Two stage: Linera NAP (m = 32) 

and Polynomial Kernel 8.78 0.4047 

Polynomial Kernel NAP (m = 128) 8.19 0.3840 

Gaussian Kernel 12.29 0.5235 

Two stage: Linera NAP (m = 32) 
and Gaussian Kernel 8.61 0.3970 

Gaussian Kernel NAP (m = 128) 7.89 0.3851 

Fig.2 DCF vs. number of nuisance attributes projected out in 
linear, polynomial and Gaussian kernels 
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