
ENVIRONMENT-INVARIANT COMPENSATION FOR REVERBERATION USING LINEAR
POST-FILTERING FOR MINIMUM DISTORTION

Kshitiz Kumar1 and Richard M. Stern1,2

Department of Electrical and Computer Engineering1

Language Technologies Institute2

Carnegie Mellon University, Pittsburgh, PA 15213
Email: {kshitizk,rms}@ece.cmu.edu

ABSTRACT

Speaker identification systems work quite well in controlled envi-
ronments but their performance degrades severely in the presence of
the reverberation that is frequently encountered in realistic acousti-
cal environments. In this paper we develop an algorithm to make
speaker identification systems more robust to reverberation by pass-
ing sequences of cepstral features through a short FIR filter. The
coefficients of the filter are chosen to minimize the mean square dif-
ferences between compensated features in the training and testing
environments. Surprisingly, the resulting filter coefficients are rel-
atively invariant to the actual nature of the reverberation. The use
of the post-filtering approach is shown to improve speaker identifi-
cation accuracy, especially when reverberation times are relatively
long.

Index Terms— Speaker Recognition, Deconvolution, Least
Mean Square Methods, Wiener Filtering

1. INTRODUCTION

Speaker recognition or speaker identification (SID) is the technology
that attempts to identify a subject on the basis of his or her speech
[1]. Some of the important applications of the SID include speaker
authentication, security, and verification.

Current state-of-the-art SID systems perform very well in con-
trolled environments where speech samples collected for the iden-
tification task are reasonably clean, but real life environments are
far less controlled. SID accuracy can deteriorate significantly in
the presence of noise, interference, and reverberation. Robustness
to noise and channel mismatch has been studied in [2][3], which
include the application of algorithms such as cepstral substraction,
feature warping, and feature transformation to SID. In this paper, we
study the robustness of SID to reverberation. The issue of reverber-
ation has been studied in terms of multi-microphone array process-
ing in [4]. Compensation methods based on score fusion have been
developed in [3]. Compensation based on multi-style training for
different reverberation conditions is described in [5].

Many of the previous approaches for reverberation compensa-
tion either require multiple microphones or training data from dif-
ferent environments. The solution for reverberation compensation is
usually local and no guarantees are made about performance across
different conditions. Our approach for reverberation compensation
is based on a single microphone, and we attempt to develop a so-
lution which is global in scope that provides improvement across a
wide range of reverberant environments.

The rest of the paper is organized as follows. We begin with a
mathematical characterization of the effects of reverberation in Sec.
2. In Sec. 2.2 we describe and optimize our algorithm for rever-
beration compensation based on post-filtering of cepstral sequences.
Experimental results are described in Secs. 3.1 and 3.2, and we dis-
cuss the underlying assumptions in our algorithm in Sec. 4. Section
5 summarizes the findings of this study.

2. SPEAKER IDENTIFICATION IN REVERBERANT
ENVIRONMENTS

In this section, we describe some of the effects of reverberation. We
propose a representation which relates reverberated speech to clean
speech. This representation leads to a distortion measure which
characterizes the mismatch between reverberated and clean speech.
Next, we propose a solution that is based on abstractly passing the
reverberated and clean speech through a linear filter and determin-
ing the coefficients that minimize the mean squared distortion. We
solve this optimization in section 2.2, and we show that under cer-
tain assumptions our solution is unique, optimal, and invariant to the
actual reverberation, so that the same solution works across different
conditions.

2.1. Mathematical Representation of Reverberation

This section provides a representation of reverberated speech in
terms of the corresponding clean speech. The SID system works
in conventional fashion, by extracting features from the signal and
determining which of a set of trained models provides the best match
to an ensemble of incoming features. In order to maintain high SID
accuracy, it is desirable that the features derived from reverberated
speech closely match features derived from the corresponding clean
speech. Let x[n] represent the cepstral features of a speech wave-
form (and not the original waveform itself), and let yu[n] represent
the corresponding cepstral features after undergoing room reverber-
ation. Because reverberation can be thought of as the convolution of
the input speech with the effective impulse response of a room, there
would be a constant difference between x[n] and yu[n] if these fea-
tures represented long-term cepstra of the entire waveform. When
x[n] and yu[n] are cepstral coefficients of brief segments of speech
(as in short-time Fourier analysis), there is an interaction between
the speech and the analysis window and the difference between x[n]
and yu[n] is no longer constant. For simplicity, we propose that the
reverberated cepstral features yu[n] can be represented as the con-
volution between the input cepstra x[n] and the cepstral coefficients
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h[n] representing the effects of the room:

yu[n] = x[n] +

Nh�
i=1

h[i]x[n − i] (1)

Referring to Fig. 1, x = x[n]|Mn=1 represents clean speech fea-
tures and yu = yu[n]|Mn=1 represents the corresponding reverber-
ated features. The subscript u in yu indicates uncompensated speech
in the testing environment. Thus, the assumption in (1) implies
a linear filter in the cepstral feature domain with filter taps being
h = [1 h1 · · ·hNh ]. Note that in this representation h[0] = 1. As

Fig. 1. Block diagram representing the model of reverberation and
compensation.

a result of reverberation, system training will be performed on the
features of clean speech x but testing will use reverberated features
yu . We define the instantaneous uncompensated distortion du[n] to
be

du[n] = x[n]−yu[n] = x[n]−h[n]∗x[n] =

Nh�
i=1

h[i]x[n− i] (2)

(The second equality is valid because h[0] = 1.)
We compensate for the effects of reverberation by imposing

a finite-impulse response LTI filter on the observed features (p in
Fig. 1). We refer to the outputs of these features as compensated,
and we use the notations xc and yc to indicate features representing
compensated clean speech and reverberated speech, respectively.
We define the instantaneous compensated distortion dc[n] to be the
difference between xc[n] and yc[n]:

dc[n] = xc[n] − yc[n] = p[n] ∗ x[n] − p[n] ∗ h[n] ∗ x[n]

= p[n] ∗ du[n] =

Np−1�
j=0

p[j]du[n − j] (3)

where Np is the number of taps in the p filter. We seek to obtain the
optimal p filter which, when applied to both x and yu , minimizes
the mean square compensated distortion dc[n] as defined above.

2.2. Solution to the Minimization Problem

In this section, we determine the optimal p filter as defined in Sec.
2.1. We define the objective for optimization to be the minimum
expected distortion between the compensated training and testing
features, and we find p to minimize E[d2

c [n]]. Using (3), obtain
E[d2

c [n]] as below:

d2
c = E[d2

c [n]]

=
�

0≤i,j≤Np−1

p[i]p[j]E[du[i]du[j]] (4)

For evaluating d2
c in (4), the terms E[du[m]du[n]] can be obtained

by using (2) as below:

E[du[m]du[n]] =
�

1≤i,j≤Nh

E[h[i]h[j]x[m − i]x[n − j]] (5)

Further, assuming that

E[h[i]h[j]] = σ2δ[i − j], σ2 �= 0

E[h[i]h[j]x[m]x[n]] = E[h[i]h[j]] E[x[m]x[n]], ∀i, j, m, n

(6)

with δ being Kronecker delta, we can obtain E[du[m]du[n]] in (5)
as

E[du[m]du[n]] = Nhσ2Rx[n − m] (7)

where Rx is the autocorrelation sequence of x. Substituting (7) into
(4), we obtain

d2
c = Nhσ2

�
0≤i,j≤Np−1

p[i]p[j]Rx[i − j] (8)

We can differentiate (8) with respect to p to find the optimal p but
this will result in the optimal p being 0: if all the elements in p are
equal to 0, all features in x and yu will be mapped to 0, and the
mean square distortion d2

c will always be zero as well. While this
is clearly the optimal solution in the mathematical sense, it is not a
useful solution. In order to avoid the degenerate solution p = 0 we
further constrain p:

Np−1�
j=0

p[j] �= 0 (9)

The constraint in (9) means that the p filter must have non-zero DC
gain. Next, the fact that the p filter will be applied to both training
and testing implies that scaling features by the same factor in both
training and testing will leave the SID accuracy unchanged. This im-
plies that we lose no generality by using the more specific constraint
on p

Np−1�
j=0

p[j] = 1 (10)

To minimize d2
c in (8) under (10), we construct a Lagrangian opti-

mization criterion as below:

Λ(p, λ) = Nhσ2
�

0≤i,j≤Np−1

p[i]p[j]Rx[i − j]+

λ(

Np−1�
j=0

p[j] − 1) (11)

Differentiating (11) with respect to [p, λ] and equating the differen-
tials to zero, we can obtain the optimal p as below:

�
����

Rx[0] Rx[1] . . . Rx[Np − 2] 1
Rx[1] Rx[0] . . . Rx[Np − 3] 1
. . . . . . . . . . . . . . .

Rx[Np − 2] Rx[Np − 3] . . . Rx[0] 1
1 1 . . . 1 0

�
����×

�
����

p[0]
p[1]
. . .

p[Np − 1]
λ′

�
���� =

�
����

0
0

. . .
0
1

�
���� (12)
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where λ′ = Rx[0] − λ
Nhσ2 . Note that the unknown in Nhσ2 due

to the reverberation filter h has been incorporated into λ′. For later
reference and compactness, we write (12) equivalently as (13).

Φ

�
pT

λ′

�
= b (13)

We note that Rx, the autocorrelation sequence of the clean features
underlying the reverberated features, is the only unknown required
to find p in (13), and specifically that the optimal solution does not
depend on the reverberation filter h. We have thus designed an opti-
mal post-filter p which is invariant to the reverberation due to h and
thus far depends only on Rx. Of course, an SID system operating
in a reverberant environment can observe directly the reverberated
features yu , but the autocorrelation of the clean speech Rx is not
directly observable. Nevertheless, we can approximate Rx as the au-
tocorrelation sequence obtained from clean features extracted from
training data:

Rx[m] ≈ RT [m], m = 0, · · ·Np − 2 (14)

where RT [m] is the autocorrelation sequence obtained from clean
features in training data. Combining (14) and (11), we can solve for
p, so the p is invariant to the underlying clean features in x. The Φ
matrix in (13) is Hermitian but not Toeplitz, its invertibility guaran-
tees a solution that is both optimal and unique for p. Φ was found to
be invertible in SID evaluations so combining (1), (6) (9), and (14),
we claim that we have developed an optimal and unique solution for
p which is not only invariant to the reverberation due to h but also in-
variant to the underlying clean features in x. This invariance greatly
simplifies our SID system. We can design p using training features
alone and use p to generate compensated training features xc , as in
Fig. 1. The processed features xc are used for training speaker mod-
els. During testing we apply the same filter p to the observed testing
features in yu and generate compensated testing features yc , again
as in Fig. 1. Because the same p is applied across all reverberation
conditions, no modification of the filter design needs to be done for
any particular reverberant environment.

3. EXPERIMENTAL VERIFICATION

3.1. Experimental Procedures

We applied our reverberation compensation approach based on post-
filtering to a subset of YOHO database[6]. For the YOHO dabase, a
total of 40 speakers labeled from 101 − 140 in the enroll part of the
YOHO database were selected as subjects. SID training involved 16
utterances from Session1, and testing was performed with 4 utter-
ances from Session2. Testing was done on clean and reverberant
conditions.

Reverberant speech was obtained by convolving clean speech
with simulated room impulse responses produced by the RIR simu-
lator for room acoustics [7], which is based on the image method.
We used a simulated room with dimensions 5 × 4 × 3m, a single
microphone located at the center of the room, and a distance of 1m
between the source and the microphone. Simulated room Reverber-
ation times (RTs) ranged from 0 to 2 s, as noted in Fig. 3. We use the
standard definition for RT, the time required for the acoustic signal
power to decay by 60 dB from the instant a sound source is turned
off. We depict typical simulated RIRs for RTs of 0.5 and 2 seconds
in Fig. 2. The larger RIRs create distortions that severely degrade
SID accuracy. We applied our post-filtering algorithm to conven-
tional 13-dimensional Mel frequency cepstral coefficients (MFCC
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Fig. 2. Typical Room Impulse Response

features), as developed using the CMU SPHINX system [8]. Pro-
cessing steps included silence detection, removal of the zeroth cep-
stral (C0) coefficient, and Cepstral Mean Normalization (CMN) [8].
For SID training, Gaussian mixture models (GMMs) were trained on
each speaker’s training data. During testing, a log-likelihood score
based test was used to identify the speaker[9].

3.2. Experimental Results

Using the procedures above, SID accuracy results are summarized in
Fig. 3. In all cases 32 Gaussian mixtures were used, which provided
our best performance for this task and database, averaged across
the reverberation conditions used. The SID accuracy curve labeled
“GMM” corresponds to the baseline uncompensated case. Compen-
sated training features were created by applying the p filter to train-
ing features and developing GMMs for the compensated features. In
presenting the compensated results in Fig. 3 we employ the notation
”GMM-P-n”, which refers to the use of post-processing filter p with
the parameter n denoting the duration of the FIR impulse response.

Comparing the results for the “GMM” and “GMM-P-n” cases
in Fig. 3, we note that our post-filtering compensation approach pro-
vides substantial improvement in SID accuracy, with greatest im-
provements observed for the larger RTs. Best performance was ob-
tained for the relatively small number of five taps, in which case the
relative SID average error rate decreased by 38% compared to the
uncompensated case, including a relative improvement of 50% for
reverberation time of 2 seconds. It is worthwhile to note that in mis-
matched cases (i.e. training on clean speech and testing on rever-
berated speech), the standard deviation of the SID accuracy across
reverberation conditions with our compensation algorithm was only
0.65%, compared to a standard deviation of 5.2% for uncompen-
sated features, indicating that the compensation algorithm is very
robust to reverberation.

All of the results above were obtained using the unrealistic ap-
proximation that RT is independent of frequency. We performed
another set of experiments using more realistic RTs that decreased
with increasing frequency using realistic frequency-dependent ab-
sorption coefficients for several common building materials. These
results, summarized in the upper rows of Table 1, also show a sig-
nificant improvement in SID accuracy using the compensation ap-
proach described in this paper. We also applied our algorithm on
SID evaluation using several real room impulse responses [10]. The
corresponding results, summarized in the lower rows of Table 1, also
demonstrate significant improvements using our algorithm. Addi-
tional results applying our algorithm to a subset of the Vermobil
database will appear in future studies.
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Fig. 3. SID Accuracy in Reverberation.

Table 1. SID Accuracy for Room Surfaces and real RIR
Real Room Uncompensated Compensated
RIR Surfaces [%] [%]

Acoustic Tile 91.3 95.7
Wood 71.9 86.3

Glass 72.5 85.0

Brick 65.6 81.9

imp-rev.30 70.0 82.5
imp-130.1 83.1 86.9

imp-160.16 97.5 97.5

4. DISCUSSION

In this section we discuss some of the assumptions made in this pa-
per. At first we assumed a representation for reverberated features
in (1). As features are generated by windowing on overlapping seg-
ments of speech signal, an exact relationship between reverberated
and clean features is hard to find. We therefore, needed approxi-
mations and borrowed (1) from representation of reverberation as a
LTI filer in time domain. h0 = 1 was chosen to keep the problem
analytically attractable.

The assumption of (6) essentially means that the frequency re-
sponse of the h filter is flat. This would occur if the RTs were con-
stant over all frequencies. This assumption was made in simulating
the speech data that was used for the results in Fig. 3, but it is not
empirically valid, as noted above. Nevertheless, the algorithm was
also successful for the environmental conditions summarized in Ta-
ble 1, which included a small number of more realistic simulated
and actual room impulse responses with reverberation time that de-
creased as frequency increased. These data indirectly validate the
proposition that the assumption of (14), although physically invalid,
still can produce useful compensation results in practice.

We can obtain an estimate of number of taps in the optimal p
as the knee in the curve describing the dependence of d2

c onNp. Al-

though d2
c decreases with a larger number of taps, the dissimilarity

among compensated features for different speakers also decreases.
As Np becomes very large, the p filter converges to be a uniform
moving average filter that smoothes out all the data and reduces ev-
ery feature to its mean value, which is zero for the MFCC features
under consideration. This reduces the SID decisions to a random

guess. For these reasons, we expect a local maximum in perfor-
mance as a function of Np. Next, we note that the optimization
construction in section 2.2 guarantees that for optimal p, the mean
squared distortion for compensated case E[d2

c [n]], is never greater
than that for uncompensated case E[d2

u[n]]. Further, the optimal p
is a linear phase filter.

The post-filtering algorithm was also applied directly to the
speech signal in the time domain but in this case uncompensated
case outperformed compensated case. This indicates that the model-
ing and assumptions in Sec. 2 is not easily generalizable to the time
domain.

Our approach for dereverberation is somewhat similar to Wiener
Filtering at a conceptual level. The major digression from the Wiener
filter is that the p is applied to both training and testing speech, which
leads to different requirements and solutions to the problem. While
our approach is invariant to the detailed nature of the reverberation
this is not the case for Wiener Filtering. We will consider gener-
alizations of our approach in later studies. We will also apply the
algorithm for speaker verification tasks.

5. CONCLUSIONS

We presented an algorithm for reverberation compensation for SID
applications. The compensation procedure consisted of a relatively
simple FIR filter that is applied to sequences of cepstral coefficients,
with the coefficients of the filter optimized to minimize the mean
square difference between the compensated coefficients for speech
in the training and testing environments. The optimal filter obtained
was unique and invariant to the environmental conditions of a par-
ticular test trial. This approach provided significant improvement in
SID accuracy across different reverberation conditions encompass-
ing simulated as well as actual RIRs and also across different speech
databases.
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