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ABSTRACT
We present a novel classi cation model that is formulated as a ratio
of semi-de nite polynomials. We derive an ef cient learning algo-
rithm for this classi er, and apply it to two separate phoneme classi -
cation corpora. Results show that our disciminatively trained model
can achieve accuracies comparable with state-of-the-art techniques
such as multi-layer perceptrons, but does not posses the overcon -
dent bias often found in models based on ratios of exponentials.

Index Terms— Pattern recognition, Speech recognition

1. INTRODUCTION

There are many multi-class classi ers, for instance multi-layer per-
ceptrons (MLPs)[3] and Gaussian mixture models. Given suf cient
training data, and if we choose the right MLP, it is possible for the
model to converge to the true posterior distribution p(y|x). In prac-
tice, however, these models, all based on exponentials, tend to pro-
duce low-entropy distributions. That is, whether wrong or right, the
models are typically quite con dent in their decisions.

There are many cases in which we may ask for more from a clas-
si er. There has been recent interest in ranking classi ers, where a
classi er not only gives a probability of the correct class but also cor-
rectly ranks the classes numerically. Concentrating too much prob-
ability mass on the top class will leave little accuracy for alternative
classes. This is especially true as the number of classes grows.

Another application, the one motivating our work here, is the
Vocal Joystick (VJ) [2]. Combining machine learning, signal pro-
cessing and an understanding of human-computer interaction, the VJ
allows voice-based control for drawing [8], or moving a mouse cur-
sor or robotic arm [9]. Although targeted at individuals with motor
impairments, many able-bodied people also enjoy using the VJ.

While the VJ provides users with a high degree of control, mo-
tion is typically in one of the cardinal or ordinal directions. The
current system maps vocalizations to movement using an approach
very similar to the one in [14]. For on-screen motion, vowel quality
controls the motion direction and loudness controls the speed. For
the robotic arm, vowel quality corresponds to movement across the
top of a table with loudness again controlling speed, and pitch con-
trols vertical motion. Here, we focus on vowel quality estimation.

As an assistive device, accuracy and reliability are important, as
is providing the exibility to accomplish new tasks. Currently, the
VJ uses output probabilities as mixing weights tor estimate vowel
quality. Our experience, however, is that movement is in the direc-
tion of one of the pre-de ned classes. The reason is simple: the
classi ers are over-con dent and produce low entropy posteriors.

This material is based on work supported by the National Science Foun-
dation under grant IIS-0326382.

To overcome a bias towards labeling frames as a single class,
earlier work presented a modi ed Kalman lter which allows a user
to move in arbitrary directions [13]. That approach also introduces
lag which can make the system more dif cult to control. Our goal,
therefore, is to nd a classi er which will more smoothly transition
between classes. A consequence of this is that we expect any such
classi ers to produce higher entropy posteriors on average.

We propose a novel model which we call Ratio Semi-De nite
Classi ers (RSC). These models are discriminatively trained, with
as many parameters per class (in the most general case) as a single
Gaussian with a full covariance matrix. Our new model is far from
Gaussian, though, as we will describe in the next section. Addition-
ally, RSCs do not rely on any fast-growing functional forms (e.g.
exponentials), which we suspect is an important part of why this
model produces higher entropy output distributions while retaining
reasonable accuracy.

In this paper, we will often refer to higher entropy posteriors
as a good thing, in contrast with many other machine learning pa-
pers. To be clear, we speci cally want higher entropy posteriors in
areas where data is sparse or where we have con icting labels such
as around class boundaries. We do not want the classi er to jump
steeply from one class to another as we move across boundaries.
That is, we want classi ers with good accuracy but that can also pro-
duce increased entropy posteriors — higher entropy distributions is
a suf cient condition for this. In areas with more densely packed
data from a single class, we have no objection to lower entropy dis-
tributions although we are tolerant of higher entropy values in those
cases as that can be useful for meaningful rankings.

2. PROPOSED MODEL

The basic form of our novel classi er is quite simple:

p(y|x) =
(x− dy)T Ay(x− dy)P
k(x− dk)T Ak(x− dk)

(1)

where x are the input features and the parameters to be learned are
Θ = {Ak,dk}K

k=1 where K is the number of classes. Note that
unlike a Gaussian classi er, we have only a polynomial in the nu-
merator and only a polynomial in the denominator. In order to be
a valid probability distribution, we must have Ak � 0 ∀k and
∀x ∃i ∈ {1, .., K} such that xT Aix > 0. That is, each matrix
must be positive semi-de nite and at every point at least one matrix
must give a strictly positive result. By parameterizing each matrix
A as A = BBT , we can guarantee semi-de niteness at the loss of
convexity, as seen in [16].

Given training data D = {(xi, yi)}N
i=1 where xi are feature

vectors and yi integral class labels, we can put our problem in a
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conditional maximum likelihood framework. We nd that learning
RSCs is solved via an optimization problem:

max
Θ

X
i

log
(xi − dyi)

T ByiB
T
yi

(xi − dyi)P
k(xi − dk)T BkBT

k (xi − dk)
. (2)

Without the parameterization of A, this would be an instance of
semi-de nite programming [17] and quite computationally expen-
sive. [4] showed that, as long as there are fewer constraints than the
rank of the matrices — for any matrix rank — this parameterization
will add no additional local extrema. The result is that the optimiza-
tion will end on either a (nearly) at constraint face or else will nd
an optimal solution. Here, we are guaranteed semi-de nitenesse so
we need not have any constraints. The resulting form can thus be
ef ciently optimized.

De ne αik = (xi − dk)T BkBT
k (xi − dk) and βi =

P
k αik

so that log p(yi|xi) = log
αiyi
βi
. Differentiating with respect to Bc

and dc, respectively, yields

∂ log p(yi|xi)

∂Bc
= 2

„
βi − αic

αicβi
(xi − dc)(xi − dc)

T Bcδ(yi, c)

(3)

− 1

βi
(xi − dc)(xi − dc)

T Bc(1− δ(yi, c))

«

∂ log p(yi|xi)

∂dc
= 2

„
βi − αic

αicβi
BcB

T
c (xi − dc)δ(yi, c) (4)

− 1

βi
BcB

T
c (xi − dc)(1− δ(yi, c))

«

There is no analytical solution, but this problem can be solved
via stochastic gradient ascent. The optimization can still be quite
complex; fast matrix multiplies [1, 19] alleviate this problem.

2.1. RSC Properties

Some properties of our model, and comparisons to other models,
follow. First, RSCs do not have any fast growing function, which
we believe is important in allowing the production of higher entropy
posteriors. Second, a more obvious point, is that a class is more
likely if the value of the numerator is large relative to that of other
classes. Consequently, the vectors dk are not class means; we refer
to them as shift vectors. If anything, they could perhaps be called
anti-means since the shift vector for a given class will in general be
pushed away from the mean of that class: if x = dk, then class k
will have zero probability.

Unfortunately, not all values of thed vectors yield a well de ned
model. As Theorem A shows, an RSC is not always continuous.

Theorem A. Suppose all dk = d. Then an RSC is not continuous
at x = d.

Proof. Let ac
ij be the (ij)th element of matrixA and xn be element

n of vector x. Also, let x′ = x − d, so that the posterior becomes
p(y|x) =

x′T Ayx′
x′T P

k Akx′ . Let x′
n = 0 ∀n �= i, then

lim
x′

i→0
p(y|x′) = lim

x′
i→0

x′2
i ay

ii

x′2
i

P
k ak

ii

=
ay

iiP
k ak

ii

where we apply l’Hôpital’s rule twice for the second equality. If we
do the same for x′

n = 0 ∀n �= j, j �= iwe nd limx′
j→0 p(y|x′) =

a
y
jj

P
k ak

jj

. These two limits are not equal in general.

We add a penalty term while training to avoid areas of the pa-
rameter space where the model is not continuous.

The most similar model we have found to ours, and the original
motivation for RSCs, was presented in [5]. Their form has dk =
0 ∀k, meaning there is a lack of continuity at the origin. Addition-
ally, their model is symmetric about the origin— p(y|x) = p(y|−x)
— and has additional constraints. Speci cally, [5] desires each ma-
trix Ak be idempotent and that

P
k Ak = I, which allows an in-

terpretation that the probabilities are an estimate of the degree to
which x belongs to class k. Requiring idempotent matrices makes
the problem NP-hard, so [5] uses a relaxed version of that constraint.
As mentioned earlier, we also derived inspiration from the parame-
terization A = BBT as seen in [16], although that makes our opti-
mization non-convex.

RSCs thus generalize [5]. The result that the matrices sum to
identity as found in [5] is a consequence of other assumptions and
allows a model that is truly linear in the class matrices. Our general-
ized version does not require such a constraint, which also simpli es
the optimization.

2.2. Regularization and Penalty

One side-effect of requiring summation to identity as in [5] is im-
plicit regularization. Since regularization has been shown to be im-
portant for many machine learning algorithms [18, 3, 12], we have
added regularization to our model, along with the aforementioned
penalty, both of which we will explain here.

Our full objective function is

max
Θ

X
i

log p(yi|xi)−λB

X
k

‖Bk‖2F−λd

X
k

‖d‖2−λs
1

|C| (5)

where C =
PK

k=1(dk − μ)(dk − μ)T , with μ = 1
K

P
i di. The

rst regularization term is the Frobenius norm of the matrices and
the second is the L2 norm of the shifts. These terms tend to prefer
smaller matrix and shift values. The third, a penalty on the determi-
nant of the covariance matrix of the shift vectors, forces them away
from being equal (which causes non-continuity). This ensures that
the model will remain continuous everywhere.

We have considered alternative matrix regularizers, for instance
‖B − αI‖. Early testing showed no improvement for α = 1 and
α = 1√

K
, so for now we have focused on the simpler form given in

Equation 5.
At rst, the penalty term’s reliance on a determinant would seem

to yield a complex derivative [15]. Differentiating |C|−1 with re-
spect to element n of vector k gives

∂|C|−1

∂dkn
=
−1

|C|Tr

„
C−1 ∂C

∂dkn

«

which would require a matrix multiply for every element of every
shift vector. By exploiting the derivative of a covariance matrix with
respect to one of its constituent vectors and taking advantage of the
matrix trace, we see that

∂|C|−1

∂dkn
=

−2

K|C| 〈C
−1
:,n , (dk − μ)〉

where 〈x,y〉 is a dot product between vectors and A:,i refers to col-
umn i of matrix A. Because of this simple form, we can thus calcu-
late the derivative for the entire vector at once as

∂|C|−1

∂dk
=

−2

K|C|C
−1(dk − μ). (6)

4114



Since C is symmetric, positive semi-de nite and the same for all
shift vectors, this can be calculated very ef ciently.

The gradients of Equation 5, relying on Equations 3, 4 and 6 and
the trivial norm derivatives, are thus

∂

∂Bc
=

∂ log p(yi|xi)

∂Bc
− λBBc (7)

∂

∂dc
=

∂ log p(yi|xi)

∂dc
− λddc + λs

2

K|C|C
−1(dc − μ). (8)

For situations where the number of classes is smaller than the
number of features, the covariance matrix of the shifts will not be
full rank. In these cases, we instead employ a set of random pro-
jections [6] and create a set of several matrices with elements dis-
tributed as N (0, 1). We then calculate the covariance in that lower-
dimensional space. By summing the results over several of these
matrices, we achieve the desired effect with high probability while
the use of random matrices means the probability of a spurious large
penalty should be quite low.

3. EXPERIMENTAL ENVIRONMENT

We have tested our model on two data sets. In both cases, we used
MFCCs with rst-order deltas giving 26-d feature vectors. Frames
were 25ms long with a 10ms shift. We also varied the number of
frames in the feature window.

The rst data set is the Vocal Joystick Vowel Corpus [10]. This
is a set of vowels collected speci cally for the VJ project. We created
a training set from 21 recording sessions (2 speakers appear twice,
although there is only partial overlap in their sounds), a development
set of 4 speakers, and a test set of 10 speakers. All speakers come
from the earlier data collection efforts described in [10] and capture
the wide variability in human vowel production.

Within that corpus, we conducted several sets of experiments.
The rst used only utterances containing a single vowel. We tested
two conditions: for the 4 vowel case, there are approximately 275k
training frames (1931 utterances), and 550k frames (3867 utter-
ances) for the 8 vowel case. For both development and testing, we
determined accuracy values by splitting the data 6 ways, calculating
accuracy over 5 of the 6 sets, and taking the average result.

In addition to the single vowel utterances, we also tested the
models on utterances where a speaker shifts from one vowel to an-
other, which we term diphthongs. There are approximately 340k
frames in 2140 utterances. These les do not have labels; speakers
were supposed to smoothly transition between vowels. The vowel
quality at the start and end of the utterances tends to be shifted from
the vowel quality seen in single vowels. These les are used only for
comparing the entropies of the resulting posteriors.

Our second data set is TIMIT [7], a standard database often used
for phone classi cation. We randomly selected 40 speakers from the
training set giving a 400 utterance development set. The test set was
unchanged. We used the 39 phone set described in [11].

We have compared our model to a 2-layer MLP and, since the
number of parameters are identical, to a Gaussian using single Gaus-
sians with full covariance. For our model, we set λB = λd and per-
formed a search to tune the parameter values. We set λs = 10−10 to
be small so that it will have a signi cant effect only if the shifts are
nearly equal. For the neural network, we did a complete grid search
over a substantial range values to determine the best values for both
the number of hidden nodes as well as regularization parameters on
both layers in order to compare against the best MLP we could nd.
Additionally, we compared using feature windows of 1 and 3 frames,
and also 7 frames for the VJ Corpus.

4 vowels Accuracy (%) Entropy
Frames 1 3 7 1 3 7
RSC 95.7 97.5 98.1 0.85/0.43 1.13/0.31 0.83/0.37
MLP 97.4 98.2 98.6 0.66/0.40 0.62/0.38 0.31/0.29
Gaussian 97.2 95.2 93.2 0.07/0.19 0.08/0.21 0.06/0.19

8 vowels Accuracy (%) Entropy
Frames 1 3 7 1 3 7
RSC 68.5 71.2 73.4 2.14/0.32 2.51/0.23 2.53/0.22
MLP 71.3 72.2 72.7 1.03/0.58 1.04/0.56 0.90/0.58
Gaussian 69.7 67.6 56.5 0.71/0.57 0.57/0.55 0.29/0.39

Table 1. Development set results for the VJ Corpus. Only the best
results for each model are shown. Entropies are given as mean/dev.

4 vowels Accuracy (%) Entropy
Frames 1 3 7 1 3 7
RSC 88.7 90.1 89.9 0.97/0.43 1.21/0.33 0.98/0.40
MLP 90.6 91.1 91.6 0.73/0.42 0.70/0.42 0.41/0.35
Gaussian 89.8 87.9 85.8 0.13/0.26 0.11/0.24 0.10/0.25

8 vowels Accuracy (%) Entropy
Frames 1 3 7 1 3 7
RSC 62.1 63.2 63.4 2.17/0.31 2.52/0.21 2.55/0.21
MLP 67.2 67.8 68.4 1.08/0.58 1.11/0.58 0.97/0.61
Gaussian 61.9 60.7 54.3 0.69/0.57 0.54/0.53 0.31/0.41

Table 2. Test set results for the VJ Corpus. Entropies are given as
mean/standard dev.

4. RESULTS AND DISCUSSION

Development set results on the VJ Corpus appear in Table 1. In
general, we see the RSC and MLP results improve with increasing
window size, whereas the Gaussian shows decreasing accuracy. For
the 8-vowel 7-frame case, the one currently in use for VJ mouse
control, the RSC even beats the MLP. Despite that, the Gaussian
is much more con dent than either other classi er, with the MLP
still substantially more so than the RSC — admittedly, however, the
Gaussian was not trained with any regularization term.

In Table 2 we show results of applying the same models on the
test set. The two sets are reasonably different (see [10] for reasons)
so accuracies have fallen. In this case, the Gaussian is always rather
con dent despite being wrong quite often. The MLP shows higher
performance than the RSC for accuracy in this case. Testing with
other RSC models that had slightly lower development set results
improved the accuracy to as high as 64.2%.

Diph. 4-vowel models
Frames 1 3 7
RSC 1.01/0.46 1.27/0.37 1.04/0.45
MLP 0.82/0.47 0.79/0.47 0.50/0.43
Gaussian 0.16/0.30 0.13/0.28 0.12/0.27

8-vowel models
Frames 1 3 7
RSC 2.18/0.36 2.55/0.25 2.56/0.25
MLP 1.03/0.63 1.03/0.63 0.91/0.66
Gaussian 0.63/0.60 0.48/0.55 0.27/0.40

Table 3. Entropy (mean/dev) results for diphthongs.
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Fig. 1. Entropy plot for a diphthong /ae-i/. Plots use 4 vowel models,
7 frame windows.

Dev. Accuracy (%) Entropy
Frames 1 3 1 3
RSC 46.0 47.7 3.36/0.96 3.30/0.97
MLP 58.3 64.0 2.03/1.13 1.69/1.04
Gaussian 54.9 50.6 1.32/0.93 0.70/0.68

Test Accuracy (%) Entropy
Frames 1 3 1 3
RSC 46.0 47.7 3.36/0.96 3.30/0.98
MLP 57.8 63.4 2.04/1.13 1.70/1.06
Gaussian 54.6 50.6 1.32/0.93 0.70/0.68

Table 4. Development (top) and test (bottom) results for TIMIT
with 39 phone classes. Entropies are given as mean/standard dev.
Maximum possible entropy ≈ 5.29.

The diphthongs, shown in Table 3 are quite interesting — both
the MLP and Gaussian were, on average, even more con dent when
the utterances crossed vowel boundaries. The RSC, on the other
hand, showed very slight upticks in entropy values. This is where
we see the most potential for this model. Looking at Figure 1, we
see the desired effect: all three models have similar trajectories, but
the RSC is never as over-con dent, especially in the middle of the
utterance, as are the other two models.

As Table 4 shows, the RSC accuracy is worse compared to the
other models on TIMIT. This may be due, in part, to the shifts being
pushed away from each class with so many more classes. Entropy
values, on the other hand, show that the RSC does seem to catch the
inherent ambiguity better than do the other models.

5. CONCLUSIONS AND FUTUREWORK

We have introduced a new classi cation model that is formulated as a
ratio of semi-de nite polynomials. We have moreover demonstrated
that this model can achieve comparable accuracies as state-of-the-art
discriminative classi ers, but does not posses the overcon dent bias
inherent in these models. As with any novel model, there remains
much work to be done. First, of course, we would like to nd ways
to improve the accuracy on data sets such as TIMIT, as well as to
investigate ways to help generalization between development and
test sets on the VJ Corpus. We plan to explore probabilistic bounds
on our projected covariance regularizer in an attempt to show that it
will perform as expected with a very high degree of certainty. We
would also like to nd theoretical bounds on the expected entropy of
our classi er versus that of other familiar classi ers.

Beyond purely theoretical work, there are other more practical
details waiting to be examined. We have several new variations of
RSCs in mind, and several options mentioned in this work. We think
allowing adaptation would be useful for the Vocal Joystick and ex-

pect to work on that. There is still much to understand about RSCs
— we are very excited by the many new possibilities.

Finally, we would like to thank to Amar Subramanya for many
useful discussions about this model and that found in [5].
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