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ABSTRACT

We propose a model for speech recognition that consists of
multiple semi-synchronized recognizers operating on a polyphase
decomposition of standard speech features. Specifically, we con-
sider multiple out-of-phase downsampled speech features as separate
streams which are modeled separately at the lowest level, and are
then integrated at the higher level (words) during first-pass decod-
ing. Our model lessens the severity of the oversampling problem
in many speech recognition systems – i.e., that speech modulation
energy is most important below 25Hz but a 100Hz frame rate gives a
modulation bandwidth of 50Hz. Our polyphase approach moreover
captures wider and more diverse dynamics within the speech signal.
Our integrative network is high-level, namely it couples together and
decodes word strings from different recognizers simultaneously and
asynchronously. We provide preliminary results on the 10-word vo-
cabulary version of the SVitchboard (small-vocabulary switchboard)
task and show that our polyphase recognition system significantly
outperforms an optimized baseline (HMM) approach.

Index Terms— polyphase speech recognition, dynamic Bayesian
network

1. INTRODUCTION

Perceptual experiments [1, 2] have shown that the modulation fre-
quency band between 1 and 16Hz is where the most important infor-
mation lies for speech intelligibility. This fact is further confirmed by
automatic speech recognition (ASR) experiments [3] which shows
that the low modulation frequency bands (0-1Hz) and high modula-
tion frequency bands (16-50Hz) are harmful (or useless) for ASR.
The most widely used cepstral-based features in state-of-art ASR
system, however, are typically sampled at a rate of 100Hz, giving a
50Hz bandwidth for representing modulation energy, something that
is overkill. In other words, most speech features oversample in the
modulation domain.

Acoustic frame oversampling can have several deleterious ef-
fects. First, the effect of the acoustics can dominate the rest of
the model (pronunciation and length scores, language model scores,
etc.). This can be corrected to some extent by language and acous-
tic model scaling factors to counter balance the dominance of the
acoustics. The extent to which these factors can fully correct for this
imbalance is not fully known, however — an alternative approach,
as presented here, would lessen the imbalance in the first place. Sec-
ond, by representing modulation energy in the (apparently less in-
formative) bands between 25Hz and 50Hz, there is a danger that the
model may become sensitive to aspects of the signal that do not have
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a strong importance for the underlying words contained in an utter-
ance – a perhaps better approach would be to concentrate the models
representational power on those most informative modulation bands.
Third, oversampling might lead to speech recognition systems that
are more computationally expensive than necessary.

To address this problem, we introduce a novel polyphase speech
recognition model. The model operates on multiple streams of
speech features, each of which derived from a downsampling of
phase-shifted original speech features. These multiple streams are
then modeled separately at the lowest level, and are not forced to
remain fully synchronized with each other. A higher level combina-
tion strategy is used to integrate the word hypotheses of the various
polyphase recognizers together to arrive at a final hypotheses. We
moreover perform this representation entirely within one statistical
system, so that a single first-pass decoding procedure is used to
produce final word hypotheses.

Our approach is indeed a form of classifier combination for
speech recognition. Indeed, many ASR approaches have been pro-
posed in the past for the combination of multiple recognizer outputs,
where each base recognizer extracts some unique characteristic of
the speech signal. These aspects of speech might be represented at
the acoustic level (multiple observation streams), the hidden level
(multiple hidden Markov chains), or both. One popular combination
method is the multi-stream approach, where the speech signal has
been divided into multiple, possibly semi-independent, streams of
partially coupled information. For instance, in the multi-band ap-
proach [4], the speech signal is divided spectrally, and where each
speech stream represents a different spectral sub-band on which an
independent recognizer is applied. The different recognizers are
the combined at a later stage. In [5], heterogeneous acoustic mea-
surements are proposed to increase the amount of acoustic-phonetic
information extracted from the speech signal, and phone classifiers
utilizing these heterogeneous measurements are combined through
hierarchical and committee-based techniques. At the hidden layer,
articulatory-based approaches to speech recognition are becoming
more popular [6], where the speech signal is represented by multiple
semi-synchronous streams of articulatory gestures. Early multi-
stream work also includes that of HMM decomposition [7], where
both speech and noise are consider a separate stream. Dynamic
Bayesian networks (DBNs) have also been used for multi-stream
[8], including audio-visual speech recognition [9, 10, 11]. Even
HTK has the ability to represent multiple synchronous acoustic
streams.

Our approach is novel, in that our streams are in fact derived
from a polyphase decomposition of some original feature stream.
For example, one instance of our approach divides the even num-
bered and odd numbered frames into separate streams. Alone, this
method might not be useful, but we use the framework of DBNs
[12, 13] to represent a partially-synchronous integrative procedure
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Fig. 1. Diagram of polyphase speech recognition.

between these polyphase streams. In particular, the streams are com-
bined at the word level, but the word hypotheses are allowed to
desynchronize from one another to a certain extent. Moreover, our
decoder jointly decodes from all streams simultaneously, rather than
having a first pass for each individual downsampled recognizer. The
benefits of such joint decoding is that it has the ability to discover
desynchronized hypotheses that look good in tandem. Moreover,
our approach allows us to simultaneously train each sub-stream rec-
ognizer with respect to each other.

2. POLYPHASE FEATURES

2.1. Polyphase Decompositions

Polyphase decompositions [14] are fundamental to many applica-
tions in multirate digital signal processing [15]. The basic concept
is briefly reviewed here. Let h(n) be a discrete sequence. We can
write its z-transform as follows:

H(z) =
∞�

n=−∞

h(2n)z−2n +
∞�

n=−∞

h(2n + 1)z−2n−1

= E0(z
2) + z−1E1(z

2)

(1)

whereE0(z) =
�∞

n=−∞ h(2n)z−n andE1(z) =
�∞

n=−∞ h(2n+

1)z−n.
This representation is called the two-component polyphase de-

composition of H(z). E0(z), E1(z) are called polyphase compo-
nents, which are the z-transforms of the even and odd numbered
sampled sequences e0(n) = h(2n) and e1(n) = h(2n+1), respec-
tively. Similarly, it is possible to represent H(z) in M -component
polyphase form:

H(z) =
M�

k=0

z−kEk(zM ) (2)

The sequence h(n) is divided into M sub-sequences ek(n) =
h(nM + k), k = 0, ..., M − 1, and each of them is merely a M -
fold decimated version of h(n + k). One benefit of a polyphase
decomposition is that the computation is reduced when dealing with
sub-sequences, while computation/memory can be shared among
polyphase components.

In our polyphase ASR framework, we apply the concept of
polyphase decomposition onto the speech feature stream to ob-
tain so called polyphase features. Specifically, let x(1 : T ) =
(x(1), x(2), . . . , x(T )) be a sequence of speech feature vectors.
The M-component polyphase decomposition of this sequence results
inM separate sequences xm(t) = x(m+ tM), form = 1, . . . , M ,
each of approximate length T ′ = T/M .

2.2. Generation of Polyphase Features

The generation of polyphase features is straightforward, but is il-
lustrated in Fig. 1 for the case of M = 2. For example, a basic
cepstral-based feature sequence x(n) is first extracted from speech
using a common frame rate (e.g., 100Hz). As mentioned in Sec-
tion 1, such a sample rate oversamples in the modulation domain. To
overcome this problem, x(n) is decomposed into two sub-sequences
with even and odd numbered frames of x(n), say xe(n) = x(2n)
and xo(n) = x(2n + 1). Both xe(n) and xo(n) are sequences
sampled at the rate of 50Hz. With a bandwidth of 25Hz, xe(n)
and xo(n) do not contain high modulation frequency energy (above
25Hz), which as mentioned above is less useful for speech intelligi-
bility. Speech features are augmented with delta and double-deltas.
We apply the delta-computation only after the downsampling has
occurred, so that each stream has its own unique delta sequence
(derivatives are applied to xo(n) and xe(n) separately). When uti-
lizing the same absolute delta window size (as measured in number
of frames), these new deltas therefore integrate information over a
larger time span compared to the derivatives of the original feature
sequence x(n). This might itself have benefit, as it has been shown
that long-time features can be quite useful [16]. We refer to these
extended features as polyphase features, and to each sub-feature se-
quence as a polyphase component.

Of course, the generation of polyphase features are not limited
to the M = 2 case. For higher values of M , however, we would
start with a higher initial sampling rate to avoid representing too low
a modulation bandwidth range. For instance, we can decimate a 150
Hz feature sequence by a factor M = 3 to obtained another group
of polyphase features with 3 components each at 50Hz.

3. STATISTICAL POLYPHASEMODELING

One way to deal with the multi-stream features produced above
would be to have M separate recognizers, each separately trained
and separately decoded, and then whose hypotheses would be com-
bined using a standard method, say using ROVER [17]. We propose
an alternative “polyphase” statistical model that essentially consists
of M separate recognizers, one for each polyphase component, and
then an integration network that allows for the asynchronous inte-
gration of multiple word hypotheses. This model therefore allows
a joint-decision to be made regarding the best word hypothesis. It
allows each polyphase component recognizer to be trained jointly
as well. We utilize dynamic Bayesian networks (DBN) [12, 18, 13]
to represent, encode, and implement this model — DBNs provide
a flexible and powerful representational framework with which one
may describe an enormous family of models, polyphase speech
recognition included.

Before describing our DBN, we first provide a simple overview
of our model whenM = 2. We have a feature stream x1:T , a high-
level “integrative” set of hidden variables h1:T , and two lower-level
polyphase component hidden variables he

1:T and ho
1:T . Let re =

2 : 2 :T and ro = 1 : 2 :T denote the even and odd frame indices
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Fig. 2. A fragment of four frames of our DBN showing the asyn-
chronous integration between two M = 2 polyphase components.
The graph expresses word-level asynchrony, and allows the discov-
ery of the best joint-hypotheses between the two separate polyphase
component recognizers. In this figure, all nodes correspond to dis-
crete random variables, arrows point from parents to children, and
dashed arrows indicate switching parents. Other parts of the DBN
(e.g., the polyphase features) are not shown for simplicity, but the
parts missing are similar to two out-of-phase copies of what is de-
scribed in detail in [13]

respectively. We have that:
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We see that the polyphase component features are assumed indepen-
dent given the high-level integrative combination model h1:T and
that each individual polyphase component model may have its own
asynchronous evolution. Of course, the nature and extent of the
asynchrony, and the details of the component models are not given
here, which is where we resort to a DBN description.

3.1. Joint Decoding with Word-level Asynchrony

In this work, word-level asynchrony means that the eventual decoded
word strings of all recognizers are consistent, but that the start/end
time points of the words within each string may differ to a degree To
achieve word-level asynchrony during decoding, a high-level com-
bination network is expressed using DBNs. Unlike previously pro-
posed DBNs for representing asynchrony between multiple features
[6], our network not only constrains the degree of asynchrony be-
tween strings but also makes sure that there is consistency between
them.

For simplicity, we describe our combination network for the case
of anM = 2-component polyphase model, but it is easily generated
into M > 2 multiple components, as our results in a later section

show. Figure 2 shows a fragment of our DBN (the full DBN is not
shown here for simplicity and space limitations). The general mech-
anism to achieve word-level asynchrony is as follows. At the begin-
ning of the utterance, all streams are synchronized — in other words,
the values of the word variables (word even and word odd in the
graph) are the same at the first frame 1. As time progresses, sup-
pose word even transfers to another word “right”, while the best
hypothesis for word odd is still “silence”. Since asynchrony is al-
lowed in our model, word odd is not forced to transfer to the word
“right” immediately; meanwhile there are variables (asyn even
and asyn odd) that keep track of the number of frames of asyn-
chrony. When this number reaches a maximum threshold (defined
as MAX ASYN), word odd is forced to be the value “right”. If a
word transition is triggered for word odd during the allowed pe-
riod of asynchrony, word odd will also be forced to transfer to the
value “right”. This ensures the consistency of the word sequences.

Several additional variables, along with their dependencies,
are described next. Variable word: word even exists only
in even frames and word odd exists only in odd frames. The
word variable always copies the value of the existing word vari-
able (word even or word odd) at the current frame as long as
their asynchrony variable is zero; otherwise, it will copy the value
of itself from the previous frame. This variable is redundant for
the 2-component case since the word variable of one component
can always copy the value from the other one who is ahead of
time. It is necessary, however, when combining more than two
recognizers and is used to keep a record of the current decoded
word value. Variables asyn even and asyn odd: The degree
of asynchrony is calculated by comparing the indexes of words
from all components (the indexes are presented by the counter
variable, wordCounter even and wordCounter odd). This
asynchrony variable has three parents. For asyn even, its parents
are wordCounter even(0), wordCounter odd(-1), and
asyn even(-1), where 0 indicates current frame and -1 indicates
previous frame. If wordCounter even(0) equals the maximum
value of all counters, asyn even(0) is set to zero; otherwise,
1 will be added to its previous value. Variables word even and
word odd: The major change is in the dependencies, so the logic
behind the interaction between these variables is described most
simply in Algorithm 1

Algorithm 1
if wordTransition even(-2)== 0 then
if asyn even(-1)<MAX ASYN then
No transition: word even(0)= word even(-2)

else
Force transition: word even(0)=word(-1)

end if
else
if asyn even(-1)== 0 then
An usual transition using bigram

else
Force transition: word even(0)= word(-1)

end if
end if

4. EXPERIMENTS

Our experiments were performed on SVitchboard 1, a set of small-
vocabulary tasks from Switchboard 1 [19]. In particular, we use the

1For the even stream, the first frame is frame 0, and for the odd stream,
the first frame is frame 1.
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10-word vocabulary task. The “ABC” sets are used for training, “D”
set for development and “E” for the final testing. All of our models
were implemented using GMTK [13].

The baseline features were generated by framing the waveforms
with a 25ms length window and 10ms shift. For each frame, 12 per-
ceptual linear prediction (PLP) coefficients plus log-energy were ex-
tracted along with their first and second derivatives, giving a feature
vector of 39 dimensions. Speaker normalization was then applied to
the feature vector, with the statistics of each speaker (mean and vari-
ance) estimated from Switchboard 1. A monophone HMM system
was trained with word alignments. The baseline result is illustrated
in Table 1, and it already significantly outperforms previously pub-
lished baselines [19, 20] due to the newly generated (and differently
normalized) features.

To obtain 50Hz polyphase features, two approaches were used.
The first is by decimating the 100Hz 13-dim base PLP features,
which were generated with 25ms window lengths and 10ms shifts.
The other method is to apply a 3-component polyphase decompo-
sition of the 150Hz 13-dim base PLP features generated with 25ms
window lengths and 6.666ms shifts. These extracted features were
then expanded with their first and second derivatives, forming 39-
dim polyphase features. Speaker normalization was also applied to
all the polyphase features by using statistics estimated from all of
Switchboard 1 data. The results using these polyphase features are
shown in Table 1. All polyphase component systems outperform the
baseline consistently.

The 2-component decomposed polyphase features were com-
bined for joint decoding using the graph described in Sec 3.1.
Polyphase 3-component decomposed features were also combined
for joint decoding. MAX ASYN was set to 5, which means ap-
proximately up to 100ms asynchrony between word boundaries was
allowed. Results (in Table 1) show that polyphase combination
further improves the performance, and the joint decoding also out-
performs ROVER, implemented using the NIST ROVER program
which combined the outputs of the individual polyphase component
recognizers.

Table 1. Word Error Rate on SVitchboard 10-word vocabulary Task.

Dev. Test
Baseline 16.5 16.7

even 15.3 16.3
odd 14.6 15.92-comp. decomposition

ROVER 15.0 16.2100Hz ↓ 50Hz
joint 13.9 15.0
3-1 14.8 16.4
3-2 15.1 16.1
3-3 14.4 15.63-comp. decomposition

ROVER 14.0 15.6150Hz ↓ 50Hz
joint 13.6 15.4

5. DISCUSSION AND FUTUREWORK

We have introduced a new polyphase representation for speech
recognition where a polyphase decomposition is applied to standard
speech features, and a novel semi-synchronous integrative speech
recognition model, expressed as a DBN, allows each polyphase
component feature set to evolve separately from each other, but
where word-hypotheses are jointly decoded. Results show signifi-
cant improvements over an optimized SVitchboard-10 task. Future

work will investigate further variations of our polyphase decompo-
sition, will use improved modulation features [21], and will evaluate
on larger speech corpora.
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