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ABSTRACT

We propose a novel framework for continuous speech recognition
(CSR) based on non-parametric acoustic modeling using multiple
phoneme templates set in a modified one-pass DP decoding algo-
rithm, in contrast to the conventional HMM acoustic models set in
Viterbi decoding. We particularly emphasis the ‘selectivity’ property
of templates as set in the proposed modified one-pass DP decoding
algorithm and explore various contextual definitions of the templates
and their relative performances for a range of small vocabulary tasks
with TIMIT database using only acoustic models. Based on this,
we show that the proposed framework based on phoneme template
modeling is a viable means for CSR with potential for interesting
issues in acoustic modeling and decoding strategies, particularly in
the paradigmatically novel framework of model-free CSR.
Index terms: Continuous speech recognition, Phoneme template
modeling, One-pass DP decoding

1. INTRODUCTION

Current continuous speech recognition (CSR) is largely based on
HMM based acoustic modeling of phones and triphones. However,
various shortcomings of HMMs have long been felt now, mainly
with respect to its inability to account for inter-frame correlations
and the difficulties in reliably estimating very large number (mil-
lions) of context-dependent HMM parameters from limited training
data. In keeping with these long felt needs to overcome the short-
comings of HMM, there have been some attempts in the literature to
explore more efficient alternatives, with varied degrees of success,
including the stochastic segment models, trajectory models etc., also
in parametric forms.

In a very recent work, De Wachter et al. [2] propose the use
of template based continuous speech recognition using a template
database. Here, the main approach is to use a template database
of continuous speech which is annotated phonetically with vari-
ous acoustic as well as non-verbal attributes. During decoding,
the system uses a token passing strategy to search this continuous
unit database for an optimal word-level decoding by employing a
DTW based matching between the input utterance (feature vector se-
quence) and the templates present in the continuous speech database
(template database). This search recoveres the optimal template se-
quence (and decoded word sequence) in the continuous template
database which best matches the input speech, by assigning tem-
plate concatenation costs in correspondence to template transitions
allowed by the lexicon of the words of the task, thereby ensuring
that the ‘unit-selection’ type of decoding benefits from presence of
consecutive templates in the continuous template database, but con-
forming to the lexicon of the words in the vocabulary.

In contrast, in this paper, we propose acoustic modeling by
use of multiple templates of a monophone (context-independent
phones) or triphones (context-dependent phones) drawn from the
unit database constituting the training data; these multiple templates
are drawn out of the training data and kept as the phoneme inventory
in keeping with the de facto CSR framework, with the only differ-
ence of replacing an HMM phone (monophone or triphone) model
by a set of multiple templates (referred here as ‘phoneme template
models’). These are incorporated in a CSR framework, where the de-
coding is done by a modified one-pass dynamic programming (DP)
algorithm requiring more complex recursions when compared to the
conventional one-pass DP algorithm used for connected word recog-
nition [3] (with whole word templates). The pronunciation dictio-
nary (word lexicon) is specified as a linear baseform of phones /
triphones as in conventional CSR.

Our algorithm conforms to the basic definition of CSR and does
not give any particular emphasis to the natural ordering of the tem-
plates in the training data (from which the acoustic models - non-
parametric phoneme template model in this case - are obtained) since
this would not be of relevance to an arbitrary vocabulary of words of
a given task, which in principle can be very different from the ones
in the training data. Instead, our emphasis lies on acoustic model-
ing alone, particularly with respect to the ‘selectivity’ property of
templates as set in the proposed modified one-pass DP decoding al-
gorithm for continuous speech recognition and its implications on
acoustic modeling by monophones or triphones, particularly defined
in a long-context or short-context, leading to strong possibilities of
very high performance with acoustic modeling alone using phoneme
templates with long-span contexts.

We do not particularly focus on large vocabulary performances,
but instead present results of the proposed CSR framework for a
range of small vocabulary sizes with the TIMIT database, since our
emphasis is on establishing the importance of the context-span for
acoustic modeling with phoneme templates. Based on this, we show
that the proposed framework based on phoneme template modeling
is a highly viable means for CSR and opens up several interesting is-
sues in acoustic modeling and decoding strategies, particularly in the
paradigmatically novel framework of model-free continuous speech
recognition.

2. PROPOSED PHONEME-TEMPLATE BASED
CONTINUOUS SPEECH RECOGNITION

Fig. 1 shows the main algorithmic framework for continuous speech
recognition (CSR) proposed here. The proposed phoneme template
based acoustic model and the modified one-pass DP based decoding
algorithm are outlined below.
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Fig. 1. Proposed phoneme template based CSR framework

2.1. Proposed phoneme template modeling
In the proposed phoneme template based acoustic modeling,
each phone / triphone is represented non-parametrically by a
set of multiple templates drawn from a large training database
which is phonetically transcribed. These are shown in Fig. 1
in the block marked ‘acoustic models’ (solid lines) as P =
(p1, p2, . . . , pq, . . . , pQ), where each phone pq has up to M tem-
plates given by (pq1, pq2, . . . , pqm, . . . , pqM ). The conventional
phone-HMM based acoustic models are shown alongside in the
block with dashed lines. The trajectory representation of such phone
templates are shown in Fig. 2 for the phones /p/ and /l/ (as part of the
word ‘please’ - /p/ /l/ /i/ /s/) to highlight the contextual differences in
these templates. The other two phones /i/ and /s/ are given in various
triphone forms in Table 1.

Fig. 2. Multiple phoneme template trajectories of /p/ and /l/

Table 1. Phoneme templates of /i/ and /s/ with triphone contexts
Phone From word Phone From word

n − i1 + d need i − s1 + m prism
l − i2 + s lease a − s2 + p clasp
r − i3 + z freeze i − s3 + sil grease-sil

2.2. Proposed decoding algorithm
The use of phoneme template modeling naturally leads to a modified
form of the one-pass DP algorithm for CSR. With the continued use
of the word models in terms of linear baseform lexicon of the phones
/ triphones, the one-pass DP decoding algorithm now has to deal with
word models composed of sequence of phones / triphones (as in a
word’s lexicon), each of which is a set of large number of multiple
phoneme templates. Fig. 1 shows the proposed modified one-pass
DP decoding in the block (solid lines) which now takes the place
of the conventional Viterbi decoding block of phone HMM based
system (dotted lines).

Fig. 3. (a) Continuous speech decoding in the proposed phoneme
template based framework and b) monophone template selectivity
and implicit context-dependent modeling

2.3. Context modeling with phoneme template modeling

Fig. 3(a) and (b) show how the proposed CSR framework uses
the phoneme templates for a correct word decoding of continuous
speech. Here, each word of the vocabulary is expanded into its
phone / triphone sequence using the word’s lexicon, and multiple
templates of these phones / triphones are used in the y-axis; the in-
put test utterance to be decoded (the continuous speech utterance
‘please make way’) is shown in the x-axis. Fig. 3(b) shows the
expansion of the word-lexicon of ‘please’, where the multiple tem-
plates of the monophones of the word ‘please’ have three different
context-dependencies as shown in Fig. 2 and Table. 1. Further,
Fig. 3(b) shows how the various acoustic segments (phones) of the
‘please’ part of the input utterance are ‘selectively’ matched to the
corresponding ‘best’ monophone template of the respective phones
(from y-axis) by the optimal path (composed of the individual phone
warping paths) derived by the proposed one-pass DP algorithm.

This ‘selectivity’ property of the one-pass DP algorithm has im-
portant implications in modeling various context-dependencies as
follows. The multiple templates of a phone can be drawn from a
very large training data which contains all possible signatures of
that phone (such as context, and ‘other’ acoustic attributes such as
speaker, accent, dialect, prosody, environmental noise etc.). Now,
an acoustic segment of the input speech utterance, as typified by
a particular left/right context (or a speaker, or accent, or dialect or
prosody or a specific environmental noise), can be matched to a par-
ticular template of the phone that ‘best matches’ the input acoustic
segment. Such a ‘selectivity’ property provides a mechanism for
high classification accuracies for input test data with such intrinsic
high variabilities; this is a property unique to non-parametric acous-
tic modeling, which is not possible with phone-HMMmodels which
lack such ‘specificity’ due to its parametric form.

In addition to such ‘selectivity’ properties of templates in gen-
eral, there are specific advantages of using ‘triphone templates’ of
the triphone contexts of phones in a word, rather than use all pos-
sible templates of a monophone occurring in the word. By this, the
triphone templates continue to retain the ‘selectivity’ property for
the ‘other’ acoustic attributes with the advantage of representing the
triphones of a word with far less number of triphone templates than
monophone templates.

In this paper, we study the use of both monophone and tri-
phone templates; the phoneme template acoustic models in Fig. 1
are treated as monophones or triphones accordingly.
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Fig. 4. Proposed one-pass DP based CSR using multiple phoneme templates: (a) within word and (b) cross-word recursions

3. PROPOSED ONE-PASS DP BASED CSR

In this section, we describe the proposed one-pass DP algorithm for
continuous speech decoding in detail. This has major modifications
in its recursions (with respect to conventional connected word recog-
nition) [3], to account for word representations by linear baseform
lexicon as in CSR, i.e. as a sequence of phones / triphones each
with multiple templates. An example decoding of this algorithm was
shown in Fig. 3.

Let the vocabulary words beW = (w1, w2, . . . , wv, . . . , wV ).
Each word wv has a linear baseform lexicon of Lv phones (or
triphones) given by (pv1, pv2, . . . , pv(l−1), pvl, . . . , pvLv

). Each
phone (or triphone) pvl is some phone from the phone/triphone
acoustic models P = (p1, p2, . . . , pq, . . . , pQ), where each phone
pq has up to M templates given by (pq1, pq2, . . . , pqm, . . . , pqM ).
Thus, the lth phone in the lexicon of word wv will have up to M

templates given by (pvl1, pvl2, . . . , pvlm, . . . , pvlM ). Each of these
templates pvlm has Nvlm frames.

These notations and the one-pass DP recursions for CSR using
multiple phone/triphone templates are shown in Fig. 4. In all the
different recursions, the one-pass DP calculates the optimal (mini-
mum) accumulated distortionD(t, n, m, l, v) to reach the nth frame
of templatem of the phone / triphone in the lth position of the lexi-
con of word v, at every time instant t = 1, . . . , T of the input con-
tinuous speech utterance. The local distance d(t, n, m, l, v) in these
recursions is the distance between the tth frame of the input speech
and the nth frame of template m of the lth phone in the lexicon of
word v.

The recursions of the proposed one-pass DP algorithm for con-
tinuous speech decoding are as follows.
1. Within-word recursions
a) Within-phoneme-template recursion: These recursions are ap-
plied for each of the multiple templates of each phone in the
word-lexicon; within a phone-template, these are applied for all
frames that are not phone-template-beginning frames, i.e., calcu-
late D(t, n, m, l, v) only for the template-interior frames n =
2, . . . , Nvlm, for all templates m = 1, . . . , M of all the phones in
the lexicon l = 1, . . . , Lv of a word v, for all words v = 1, . . . , V

and for every time instant t = 1, . . . , T .

D(t, n, m, l, v) = d(t, n, m, l, v)+

min
j=(n,n−1,n−2)&(j>0)

[D(t − 1, j, m, l, v)] (1)

b) Cross-phone recursion: This is defined for transition from any of
theM multiple templates of phone pv(l−1) to any of theM multiple
templates of phone pvl in the lexicon of a word wv . This is applied
for all phones excluding the first phone in the lexicon of a word (as
it can receive a transition only from other words). These recursions
correspond to entry into any of the M templates of a phone within
a word, i.e., calculate D(t, n = 1, m, l, v) for n = 1 and m =
1, . . . , M for every phone pvl, l = 2, . . . , Lv for all words v =
1, . . . , V and at every time instant t = 1, . . . , T .

D(t, n = 1, m, l, v) = d(t, n = 1, m, l, v)+

min[D(t − 1, n = 1, m, l, v),

min
j=1,...,M

[D(t − 1, Nv(l−1)j , j, l − 1, v)]] (2)

2. Cross-word transitions

These transitions correspond to entry into the first frame n =
1 of any of the M multiple templates m = 1, . . . , M of the first
phone pv(l=1) of the word v from any of the M multiple templates
m = 1, . . . , M of the last phone prLr

of all words r = 1, . . . , R,
i.e., calculate D(t, n = 1, m, l = 1, v) for every time instant t =
1, . . . , T , for n = 1, m = 1, . . . , M, l = 1 and v = 1, . . . , V as,

D(t, n = 1, m, l = 1, v) = d(t, n = 1, m, l = 1, v)+

min[D(t − 1, n = 1, m, l = 1, v),

min
r=1,...,V

[ min
j=1,...,M

D(t − 1, NrLrj , j, Lr, r)]] (3)

3. Termination and backtracking

The decoding using the above recursions terminates at the last
time instant T with the optimal accumulated distortionD∗,

D
∗ = min

v=1,...,V
min

m=1,...,M
D(T, NvLvm, m, Lv, v) (4)

i.e., this is the minimum accumulated distortion over the last frames
NvLvm of all theM templates of the last phone Lv of all the words
v = 1, . . . , V . The optimal path through the one-pass DP ‘grid’ and
the corresponding decoded word sequence are recovered by back-
tracking using the backpointers stored during the forward computa-
tions of the recursions given by Eqns. (1), (2) and, (3). The back-
pointer equations and the backtracking equations are not shown here
due to space constraints.
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4. EXPERIMENTS AND RESULTS
We evaluate the proposed CSR framework with phoneme templates
using the TIMIT database. The experiments done here are primar-
ily intended to bring out the acoustic modeling efficacy of phoneme
templates in various contextual settings, rather than on the largeness
of the continuous speech recognition tasks or the use of language
models, efficient search etc. Keeping with the fact that the proposed
system is a template based system, we have used conventional con-
nected word recognition using whole-word templates [3] as the base-
line for our comparisons to represent the ideal long-span context for
template based modeling.

We have performed 5 main continuous speech recognition ex-
periments using the TIMIT database. Of these, 4 are defined on a
task of 21 word vocabulary from the two sentences (sa1, sa2) of
TIMIT; the test sentences comprise 100 sentences made of these
(sa1, sa2) sentences spoken by 50 speakers. Table 2 shows the def-
inition of the phoneme templates for each of these 4 experiments,
where a phoneme template type could be a mono-phone (context-
independent) or triphone templates and further defined as out-of-
word-context and in-word-context.
Table 2. Experiments (1-4) & their phoneme template definitions
Template Templates drawn from
Type Outside (sa1,sa2) Inside (sa1, sa2)

Monophone 1. Mono-non-sa1-sa2 3. Mono-in-sa1-sa2
Triphone 2. Tri-non-sa1-sa2 4. Tri-in-sa1-sa2

Expt. 5 is to show the performance with respect to vocabulary
size, with test data comprising of (non-sa1-sa2) sentences in TIMIT
with vocabulary words ranging from 20 to 100 words. This is a typi-
cal CSR scenario, where triphone templates are drawn from training
data which does not have any of the words in the test data.

In all these experiments, the data from which the phoneme tem-
plates are drawn are spoken by speakers different from the test speak-
ers and the lexicon used for the words in the vocabulary are as given
by the manual phonetic transcription associated with these words in
the test sentences. The features used are MFCCs of dimension 39
with delta and delta-delta coefficients and normalized energy.

We present results in terms of word recognition accuracies as
computed in CSR decoding between the reference and decoded word
sequences; results of Expt. 1 to 4 are shown in Fig. 5(a) and Fig. 5(b)
shows the results of Expt. 5.
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Fig. 5. Word recognition accuracies (%) of proposed phoneme tem-
plate modeling; (a) Expts. 1 to 4 (b) Expt. 5

The following can be noted from Fig. 5(a) with respect to Expts.
1 and 2: (i) The recognition accuracy for the context-independent
monophone templates for non-sa1-sa2 cases increases significantly
with the number of monophones, but soon saturates with about 80

monophones. This is largely due to its ability to model all possible
associated context-dependencies as well as inter-speaker variabilities
present in the test utterances by the ‘selectivity’ property. (ii) The
use of triphone-non-sa1-sa2 has 10% (abs) higher performance than
monophones from non-sa1-sa2, clearly indicating the advantage of
using context-dependent templates. (iii) A much smaller number
(2̃0) of triphones are needed to achieve the same (and even better)
performances of a larger number (80-100) of monophones.

The following can be noted from Fig. 5(a) with respect to Ex-
pts. 3 and 4: The recognition accuracies using monophones and
triphones from within the sa1 and sa2 words (mono-in-sa1-sa2 and
tri-in-sa1-sa2) are 77-83%, dramatically higher by 30-40% (abso-
lute) than for phoneme templates from non-word contexts in Expt. 1
and 2. This clearly shows the importance of preserving longer con-
texts in the templates. The triphone performance in-sa1-sa2 itself
is about 10% higher than for mono-in-sa1-sa2. This has important
implications that use of carefully selected, ‘long’ context phoneme
templates can lead to high accuracies using acoustic modeling alone.

Fig. 5(a) also shows the baseline whole-word based connected
word recognition (CWR) [3] as a comparison with our proposed sys-
tem. It can be noted that the triphone performances are better than
CWR with the same number of whole word templates. This has the
important implications that the performance of a whole word tem-
plate can be reached with the use of long-span template models and
that a given number of phoneme templates handles larger variability
in the test data than the same number of whole word templates.

From the results of Expt 5 in Fig. 5(b), we observe the natural
trend of decreasing recognition accuracies from 96% to 57% with
increase in vocabulary size from 20 to 100, for a given number of
triphone templates. In all the experiments we have reported here,
we have focused on the efficacy of only the acoustic model using
phoneme template modeling. The recognition accuracies will tend
to increase for larger vocabularies with the use of more triphone
templates as well as carefully optimized triphone (and longer-span
template) categories with decision tree methodologies. It should be
noted that the recognition accuracies of 83% in Fig. 5(a) and 57-96%
in Fig. 5(b) are obtained with acoustic-modeling alone and are com-
parable to HMM based acoustic-model-only performances, as was
reported earlier in [1] and in more recent state-of-the-art systems.

5. CONCLUSION
We have proposed a novel framework for continuous speech recog-
nition (CSR) based on non-parametric acoustic modeling in terms of
multiple phoneme templates (monophones/triphones) set in a one-
pass DP decoding framework modified for continuous speech recog-
nition. Based on the results we have obtained for small vocabu-
lary continuous speech recognition using phoneme template acous-
tic modeling, the proposed framework appears as a viable means for
CSR with potential new ways for handling the acoustic units with a
rich interplay between the acoustic models and the decoding algo-
rithm and towards alternate CSR frameworks with the advantages of
non-parametric acoustic modeling.
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