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ABSTRACT 
 
In this paper, a new acoustic model called Time-Inhomogeneous 
Hidden Bernoulli Model (TI-HBM) is introduced as an alternative 
to Hidden Markov Model (HMM) in automatic speech 
recognition. Contrary to HMM, the state transition process in TI-
HBM is not a Markov process; rather it is an independent 
(generalized Bernoulli) process. This difference leads to 
elimination of dynamic programming at state-level in TI-HBM 
decoding process. Thus, the computational complexity of TI-HBM 
for Probability Evaluation and State Estimation is ( )NL  (instead 
of 2( )N L  in the HMM case). As a new framework for phone 
duration modeling, TI-HBM is able to model acoustic-unit 
duration (e.g. phone duration) by using a built-in parameter named 
survival probability. Similar to the HMM case, three essential 
problems in TI-HBM have been solved. An EM-algorithm based 
method has been proposed for training TI-HBM parameters. 
Experiments in phone recognition for Persian (Farsi) spoken 
language show that the TI-HBM has some advantages over HMM 
(e.g. more simplicity and increased speed in recognition phase), 
and also outperforms HMM in terms of phone recognition 
accuracy. 
 
Index Terms— Time-Inhomogeneous Hidden Bernoulli Model, 
Hidden Markov Model, Speech Recognition, Acoustic Modeling, 
Phone Recognition, Phone Duration Modeling, Persian (Farsi) 
Spoken Language. 
 
 

1. INTRODUCTION 
 
Hidden Markov Model (HMM) is the most popular and the most 
successful tool for analyzing and modeling stochastic sequences in 
speech processing [1]. The usual assumption in HMM is that the 
state transition process is a Markov process, and the generated 
state sequence obeys a Markov regime. It is experimentally 
approved that the state transition probabilities have less important 
roles compared to observation density functions. There is no 
attempt on relaxing the Markov dependency in acoustic models 
like HMM. In this paper, a new acoustic model named TI-HBM 
has been proposed in which the Markov regime in state transition 
process is relaxed. There are many attempts on phone duration 
modeling [2,3,4]. The TI-HBM models acoustic-unit duration (e.g. 
phone duration) by using a built-in parameter named survival 
probability, which is derived from joint state-time distribution 
parameters. In the next sections, we introduce TI-HBM and its 
basic definitions. 
 

2. TI-HBM 
 
TI-HBM model is a new acoustic model which is able to 
simultaneously model both state transition and acoustic-unit (e.g. 
phone) duration by using a new parameter called Joint State-Time 

Distribution , ( , )S TP i t . The parameter ( , )P i t  is probability of 
being in state i  at time t . Therefore, parameters of TI-HBM are: 
1. Joint State-Time Distribution ( , )P i t . 
2. Parameters of Gaussian mixtures, i.e. imw , imμ and imC . 
The parameters ( , )P i t  play roles similar to i  and ija in standard 
HMM. The following constraint must be satisfied: 

max

1 1
( , ) 1N L

i t
P i t

= =
=     (2.1) 

max( , ) 0     for  P i t t L= >   (2.2) 
where maxL  is the maximum length of observation sequence X . 
We derive some useful parameters from ( , )P i t  which are needed 
for employing TI-HBM in real-world: 
1. Time Distribution function ( )TP t  or ( )P t : 
The ( )TP t is probability of being at time t  which is computed as 
follows: 

1
( ) ( , )N

i
P t P i t

=
=   (2.3) 

If we haveK observation sequences with length kL  for k-th 
observation sequence, the time distribution function will be 
computed by relative frequency of observation vectors with time-
index t  (frame number t ). Therefore, the time distribution 
function ( )TP t  is empirically computed by the following formula: 
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1

( )ˆ( )
K

kk
K

kk

t L
P t

L
=

=

=
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  (2.4) 

 1     if  is TRUE
( )

0     if  is FALSE

cond
cond

cond
=1   (2.5) 

2. Survival probability | ( 1 | )
next currT TP t t+ or ( 1 | )P t t+ : 

Given that the process is at time t , the ( 1 | )P t t+ is probability 
of process survival to time 1t + . In other words, at time t , the 
process continues to time 1t +  with probability ( 1 | )P t t+ , 
otherwise it is terminated at time t  with probability 
1 ( 1 | )P t t+ . The | ( 1 | )

next currT TP t t+ is computed using Bayes 
formulation as follows: 

,
|

( 1, )
( 1 | )

( )
next curr

next curr
curr

T T
T T

T

P t t
P t t

P t
+

+ =   (2.6) 

Since sequence length kL  is always greater than zero, therefore: 
| (1 | 0) 1

next currT TP =   (2.7) 
The TI-HBM will be able to model acoustic-unit duration using 
survival probabilities. 
3. State selection probability given time | ( | )S TP i t or ( | )P i t : 

| ( | )S TP i t is probability of selecting state i  at time t , and is 
computed using the following formula: 

, ,
|

,1

( , ) ( , )
( | )

( ) ( , )
S T S T

S T N
T S Tj

P i t P i t
P i t

P t P j t
=

= =   (2.8) 

It can be seen that the state selection and transition process is a 
generalized Bernoulli process with probabilities | ( | )S TP i t . 
Contrary to standard Bernoulli process which is a binary process 
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(like coin tossing), the generalized Bernoulli process is a multi-
valued one with N outcomes (like dice tossing in which 6N = ) 
[5]. Since the probabilities ( | )P i t  changes with respect to time, 
thus it is a time-inhomogeneous process. 
Now, we present some useful propositions and corollaries relating 
to TI-HBM. The proofs for propositions are simple and 
straightforward. 
 
Proposition 2.1. , ( 1, ) ( 1)

next curr nextT T TP t t P t+ = + .
Proof. If the next time-index, i.e. nextT  is 1t + , then the current 
time-index, i.e. currT  is surely t . In other words: 

( | 1) 1curr nextP T t T t= = + =    (2.9) 
( , 1) 1

( 1)
curr next

next

P T t T t
P T t
= = + =

= +
  (2.10) 

( 1, ) ( 1) ( 1)
nextnext curr next TP T t T t P T t P t= + = = = + = +    (2.11) 

� 
Proposition 2.2. The Time-Distribution ( )TP t  is a decreasing 
function with respect to time, i.e. ( 1) ( )T TP t P t+ . 
Proof. Firstly, we define a set of functions ( ) ( )k kf t t L= 1 . It is 
obvious that: 

( 1) ( )     for all k kf t f t t+    (2.12) 
Summing the above equations over different k 's and then dividing 
by kL , we have: 

1 1
( 1) ( )K K
k kk k
f t f t

= =
+    (2.13) 

( ) ( )1 1 1 1
( 1)/ ( )/K K K K
k k k kk k k k
f t L f t L= = = =+    (2.14) 

  ( 1) ( )T TP t P t+    (2.15) 
� 

Corollary 2.1. |
( 1)( 1 | )

( )next curr
T

T T
T

P tP t t
P t
++ = . 

Proof. Using proposition (2.1), we have: 
,

|
( 1, ) ( 1) ( 1)( 1 | )
( ) ( ) ( )

next curr next
next curr

curr curr

T T T T
T T

T T T

P t t P t P tP t t
P t P t P t

+ + ++ = = =   (2.16) 

Two events T t=  and currT t= , and also events 1T t= +  and 
1nextT t= +  are equivalent. 

� 
Corollary 2.2. Probability of generating a sequence of minimum 

length d  is ( )( )
(1)

T

T

P dP D d
P

= . 

Proof. If D  is a variable for the sequence length, then: 

2
( ) (1 | 0). ( | 1)

(2) (3) ( ) ( )            . . ... .
(1) (2) ( 1) (1)

d
t

T T T T

T T T T
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P P P d P d
P P P d P

==

= =
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� 
Corollary 2.3. Probability of generating a sequence of exact 

length d  is ( ) ( 1)( )
(1)

T T
D

T

P d P dP d
P

+= . 

Proof. If the sequence length is exactly d , then the process will 
be terminated before time 1d +  with probability 1 ( 1 | )P d d+ :  

{ }2
( ) ( ) (1 | 0). ( | 1) .(1 ( 1 | ))

(2) (3) ( ) ( 1) ( ) ( 1). . ... . . 1
(1) (2) ( 1) ( ) (1)

d
D t

T T T T T T

T T T T T

P d P D d P P t t P d d

P P P d P d P d P d
P P P d P d P

== = = +

+ += =
 (2.18) 

� 
The Corollary 2.2 is a way for converting duration distribution 
function (.)DP  to time distribution function (.)TP : 

( ) (1). ( )T TP d P P D d=    (2.19) 

{ }

1

1

1

1(1)
K

kk
T K

kk

LKP
K E DL
=

=

= = =    (2.20) 

According to Corollary 2.1 and Eq. (2.19), we can derive survival 
probabilities using duration distribution function as follows: 

|
( 1) ( 1)( 1 | )

( ) ( )next curr
T

T T
T

P t P D tP t t
P t P D t
+ ++ = =    (2.21) 

Equation (2.21) is compatible with some result achieved in [6, 
page 1115], and verifies the propositions and corollaries in 
another way. 

 
3. SIMULATION OF TI-HBM 

 
Simulating TI-HBM means that how an observation sequence 

{ }1 2, ,..., , ...,t LX x x x x=  is generated by TI-HBM. For this 
purpose, an algorithm in Fig. (1) is followed. 

 
1. 1t =  , | (1 | 0) 1

next currT TP = . 
2. The Bernoulli process continues with survival probability 

| ( | 1)
next currT TP t t (otherwise, it is terminated with probability 

|1 ( | 1)
next currT TP t t ). 

3. At time t , state tq  is selected with probability ( | )tP q t . 
4. In state tq , a vector tx  is generated using a Gaussian mixture 
probability density function ( | , )t tp x q t  which is usually 
assumed to be time-independent, i.e. ( | , ) ( | )t t t tp x q t p x q . 
5. 1t t= + . 
6. Go to step (2). 

Figure 1. Algorithm for simulating TI-HBM 
 
If { }1,2,..., ,...,t L=  is the time-index sequence, and Q  is the 
state sequence of generalized Bernoulli process, then the joint 
probability of surviving up to time L , traversing state sequence 
Q , and generating observation sequence X  by TI-HBM will be: 

( )

( )
1

1

1

( , , ) 1 ( 1 | ) . ( | 1). ( | ). ( | , )

             1 ( 1 | ) . ( | 1). ( | ). ( | )

( ) ( 1)             . ( | ). ( | )
(1)

             ( ). ( | ).

L
t t tt

L
t t tt

LT T
t t ttT

D t

P X Q P L L P t t P q t p x q t

P L L P t t P q t p x q

P L P L P q t p x q
P

P L P q t p

=

=

=

= +

+

+=

=
1

( | )L
t tt
x q=

(3.1) 

The above equation can be written in another form: 
( , , ) ( ). ( | ). ( | , ) ( ). ( | ). ( | )P X Q P P Q P X Q P P Q P X Q= (3.2) 

( ) ( 1)( ) ( )
(1)

T T
D

T

P L P LP P L
P

+= =   (3.3) 

1
( | ) ( | )L

tt
P Q P q t==   (3.4) 

1
( | , ) ( | ) ( | )L

t tt
P X Q P X Q p x q==   (3.5) 

where ( )P is probability of generating a sequence with exact 
length L . It can be seen that the ( )P  is a function of ( )TP t  
parameters only. On the other hands, parameters ( )TP t  are 
optimally and globally determined by Eq. (2.4) and are fixed 
(constant values). Therefore, ( )P will be treated as constant 
value in log-likelihood function of TI-HBM. 
 

4. THREE ESSENTIAL PROBLEMS IN TI-HBM 
 
For employing TI-HBM in real-world applications, three essential 
problems (similar to those in the HMM case) must be solved: 
Efficient Probability Evaluation, Optimal State Sequence 
Estimation (Decoding), and Parameter Estimation (Training). 
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4.1. Efficient Evaluation of Probability ( , )P X
 
Probability of generating an observation sequence X  of length L  
is computed as follows: 

( )
1

1

1 1

( , ) 1 ( 1 | ) . ( | 1). ( | )

( ) ( 1)          . ( | )
(1)

( ) ( 1)          . ( , | )
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L
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NLT T
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T T
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P X P L L P t t p x t

P L P L p x t
P

P L P L p x i t
P

P L P L P i t p x
P

=

=

= =

= +

+=

+=

+=
1 1

1 1

1 1

| , )

( ) ( 1)          . ( | ). ( | )
(1)

           = ( ). ( | ). ( | )

NL
tt i

NLT T
tt iT

NL
D tt i

i t

P L P L P i t p x i
P

P L P i t p x i

= =

= =

= =

+

(4.1) 

In standard HMM, this probability is computed using dynamic 
programming (DP)-based methods (forward and backward 
procedures). The order of computations for evaluating ( )P X in 
HMM is 2( )N L [1], while in TI-HBM, the order for evaluating 

( , )P X  is ( )NL . Since the state transition process in TI-HBM 
is not Markov-dependent, therefore the dynamic programming-
type search is not needed for computing ( , )P X .  
 
4.2. Optimal State Sequence Estimation 
 
Since the term ( )P has no effect on *Q , i.e.: 

* arg  Max  ( , , ) arg  Max  ( , | )
Q Q

Q P X Q P X Q= =   (4.2) 

therefore, the ( , | )P X Q  is used instead of ( , , )P X Q . If *Q  is 
the optimal state sequence for generating X  by TI-HBM, then: 

{ }
1 2

*
1, ,...,

* *
1 1

( , | ) Max  ( , | ) Max  ( | ). ( | )

                Max  ( | ). ( | ) ( | ). ( | )

L

t

L
t t ttQ q q q

L L
t t t t t tt tq

P X Q P X Q P q t p x q

P q t p x q P q t p x q

=

= =

= =

= =
  

(4.3) 
{ }* arg  Max  ( | ). ( | )

t
t t t tq
q P q t p x q=    (4.4) 

It can be seen that the DP search (Viterbi algorithm with order 
2( )N L ) is eliminated from the State Estimation problem in TI-

HBM, and the order of computations is ( )NL . 
 
4.3 Training TI-HBM Parameters 
 
Suppose that we have a set X  of K  observation sequences for 
training TI-HBM parameters. If ( )kX  is k -th observation 
sequence of length kL , then: 

( )( ) ( ) ( ) ( )( )
1 2, ,..., ,...,

k

k k k kk
t LX x x x x=   (4.5) 

4.3.1. Estimating ( )TP t  Parameters of TI-HBM 
 
The estimate for ( )TP t  parameters is the number of observation 
vectors with time-index t  divided by the total number of 
observation vectors (as in Eq. (2.4)). This parameter estimator for 

( )TP t  depends only upon kL  parameters and is independent of 
( )kX 's. Therefore, it yields the final estimate of ( )TP t  parameters, 

it is kept fixed, and will be treated as constant value in next stages 
of training. In the EM algorithm, we only estimate | ( | )S TP i t  
parameters. 
In practice, the estimator in Eq. (2.4) must be smoothed. One way 
is to parameterize (.)DP  with a suitable distribution (e.g. Gamma 
distribution), and convert (.)DP  to (.)TP  by Eq. (2.19)-(2.20). 

4.3.2. Training TI-HBM by EM Algorithm 
 
We have used EM algorithm [7] for training TI-HBM parameters. 
The details of mathematical manipulations can be found in [8]: 

( )( ) ( 1)
1

1
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ktk

K
kk

P i t x t L
P i t
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=

=

=
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( ) ( )( 1)
1 1

( ) ( 1)
1 1
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K L k kn
t tk t
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P m i t x
μ = =

= =

=    (4.8) 

( ) ( )( )
( )
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1 1
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P t x P j t x

P i t p x i

P j t p x j

=
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( ) ( )
1

( | ) ( , , )Mk k
im im imt tm

p x i w x Cμ
=

=  (4.11) 
( ) ( ) ( )( 1) ( 1) ( 1)( , | , ; ) ( | , ; ). ( | , , ; )k k kn n n
t t tP m i t x P i t x P m i t x=  (4.12) 

( )
( ) ( 1)

( )
1

( , , )( | , , ; )
( , , )

k
k im im imn t
t M k

tim im imm

w x CP m i t x
w x C

μ
μ

=

=  (4.13) 

The estimated values ˆ will be stored in ( )n  for next iteration. 
 

5. EXPERIMENTS 
 
We have employed TI-HBM in speaker-independent phone 
recognition for Persian (Farsi) spoken language. For training 
HMM and TI-HBM phone models, the standard Farsi 
phonetically-balanced continuous speech database FarsDat [8] 
was used (available via ELDA web site). The FarsDat contains 
utterances of 304 speakers from 10 dialect regions inside Iran. 
Each speaker has uttered 20 sentences. The utterances of first 250 
speakers was used for training phone models (5000 sentences), 
and utterances of remaining 54 speakers was used for test (1080 
sentences). 32 phone models were trained. Feature vectors are 13 
cepstral coefficients ( 0 12c c ) derived from Perceptual Linear 
Prediction analysis, plus 1st, 2nd, and 3rd-order derivatives. The 
HMM and TI-HBM models have 3 states, and 2, 4, 8, 16, 24 and 
32 diagonal-covariance Gaussian PDFs per state. For improving 
the results, a phone-bigram language model was used, and trained 
using phone labels of the training set. The final value of maxL  was 

max2 trainL . The (.)DP  was parameterized (smoothed) with a Gamma 
distribution and truncated outside the interval 

min maxL t L ( min 3L = ), and then converted to (.)TP  using Eq. 
(2.19)-(2.20) in interval max1 1t L + . The survival 
probabilities were then computed using smoothed (.)TP . Both 
HMM and TI-HBM models were trained by EM algorithm. The 
HMM parameters were initialized with 0

HMM . By using 0
HMM , 

the optimal state sequence for all observation sequences were 
determined, and the ratio of number of observation vectors with 
time index t  which assigned to state i , to the number of 
observation vectors with time index t , was used as initial value of 

( | )P i t  in TI-HBM. The initial values of Gaussian mixture 
parameters for HMM and TI-HBM were the same. Therefore, both 
models have been trained using EM algorithm with starting from 
equivalent initial points. In decoding process, survival 
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probabilities ( | 1)P t t  are used instead of ( )DP d , because phone 
durations (d 's) are not known before the end of the search. In 
practice, [ ]( | 1) DSFP t t  and [ ]1 ( | 1) DSFP t t  was used. This 
is equivalent to putting a weight on duration-distribution function, 
i.e. using [ ]( ) DSFDP L  instead of ( )DP L . The DSF  parameter was 
optimally set to 3. After Estimating ( | )P i t  by EM algorithm, 
these parameters were extended to interval  

max max
trainL t L<  like 

as follows: 
  
max max max( | ) ( | )    for all  and train trainP i t P i L i L t L= <    (5.1) 

In recognition phase, we have used an array 0( )t ph for keeping the 
entrance time into phone ph  along the partial best path. 
Therefore, relative time-index t  instead of t  was used in 
parameters ( )P t and ( | )P i t : 

( ) ( )

( ) ( )

0

0| |

( ) ( ( ) 1)

( | ) ( | ( ) 1)

ph ph

ph ph

T T

S T S T

P t P t t ph

P i t P i t t ph

= +

= +
   (5.2) 

The phone recognition results are shown in Table (1). It can be 
seen that the TI-HBM improves the phone recognition accuracy 
compared to standard HMM. 
 

Table 1. Phone recognition accuracy (%) for the test set 
No. of Gaussians per state HMM TI-HBM 

2 68.31 68.38 
4 71.63 71.74 
8 74.17 74.19 

16 75.68 75.94 
24 76.21 76.70 
32 76.84 77.22 

 
Table 2. Elapsed time (sec) for decoding 200 seconds of speech 
No. of Gaussians per state HMM TI-HBM Speed-up 

2 6.37 3.53 80.45%
4 8.61 5.81 48.19% 
8 12.57 10.61 18.47% 

16 20.34 20.25 0.44% 
 

In another experiment, we compared recognition time for both 
HMM and TI-HBM models. Table (2) shows the elapsed time for 
decoding 200 seconds of speech signal (on an Intel Pentium IV, 
3.2 GHz processor). We can see that the TI-HBM is always faster 
than HMM, and speed-up factor is greater for low number of 
Gaussians per state. This is because of the fact that the main 
computational complexity of HMM and TI-HBM is due to the 
computation of emission probability (Gaussian mixtures). The TI-
HBM will be quite faster than HMM for applications with low 
number of Gaussians per state, or feature vectors with low number 
of dimensions, or for those discrete HMM cases in which the 
index of observation vector is known a priori without any 
computations (like amino acids in bioinformatics applications 
where discrete HMM is widely used). Also, the TI-HBM was 
always faster than HMM in training phase in our experiments (not 
reported here). 
 

6. CONCLUSION 
 
In this paper, a new acoustic model named Time-Inhomogeneous 
Hidden Bernoulli Model was introduced as an alternative to 
Hidden Markov Model for speech recognition. In TI-HBM, state 
transition process is a generalized Bernoulli process instead of a 

Markov one. In terms of phoneme recognition accuracy, the TI-
HBM outperforms the HMM. Also, TI-HBM has some 
simplicities and advantages over HMM, including: 
1. TI-HBM is a new theoretical framework for processing time 
series data, especially for speech recognition, by defining a set of 
new parameters called Joint State-Time Distribution. 
2. Dynamic Programming search is eliminated at state-level in TI-
HBM which makes it simpler compared to HMM. 
3. TI-HBM is faster than HMM in recognition and training phase. 
4. TI-HBM is capable of modeling acoustic-unit (e.g. phone) 
duration by employing a parameter named survival probability. 
5. Computation of probability in TI-HBM is performed in a non-
recursive manner. Therefore, differentiation of TI-HBM 
likelihood function with respect to its parameters is simpler and 
faster compared to that of HMM, and does not need calculation of 
recursive forward and backward variables. 
According to the obtained results on comparison between HMM 
and TI-HBM, it is approved that the state transition structure in 
acoustic models like HMM or TI-HBM is less important 
compared to the observation density structure. Therefore, the TI-
HBM can be an alternative to the HMM with easier use for 
applications like speech recognition, in which the state and the 
time-index (frame number) have strong relationship. Using 
uniform segmentation (equally segmenting speech signal which 
corresponds to an acoustic-unit, and assigning each segment to a 
state in HMM) in speech recognition for initializing HMM 
parameters is an evidence for this relationship [1]. Furthermore, 
TI-HBM can be used for modeling other speech acoustic-units like 
Word, Syllable, etc. Employing TI-HBM in other applications like 
bioinformatics, time series and pattern recognition can further 
reveal other advantages of this model. 
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