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ABSTRACT

In this paper, we present a computational framework to engage dis-
tinctive feature-based theories of speech perception. Our approach
involves: (i) transforming the signal into a collection ofmarked point
processes, each consisting of distinctive feature landmarks deter-
mined by statistical learning methods, and (ii) using the temporal
statistics of this sparse representation to probabilistically decode the
underlying phonological sequence. In order to assess the viability of
this approach, we benchmark our performance on broad class recog-
nition against a range of HMM-based approaches using the CMU
Sphinx 3 system. We find our system to be competitive with this
baseline and conclude by outlining various avenues for future devel-
opment of our methodology.

Index Terms— speech recognition, speech processing

1. INTRODUCTION

We are interested in the fundamental task of pure speech recogni-
tion—the ability of humans to interpret speech in terms of a se-
quence of phonological units without invoking any higher level (syn-
tactic, semantic, or pragmatic) linguistic knowledge. Toward this
end, we present a computational model for speech recognition that
is inspired by several interrelated strands of research in phonology,
acoustic phonetics, speech perception, and neuroscience. Our pri-
mary goal is to provide a computational platform to engage, quantify,
and test various theories in these sciences, with the hope of gaining
insights that may have eventual technological consequences.
In our system, distinctive features are the atomic units, as op-

posed to the phone-based representations (e.g. triphones) used in
most modern speech recognition systems. The various acoustic cor-
relates of distinctive features operate at different scales in time and
frequency. Consequently, rather than having a “one size fits all” rep-
resentation that is common in most systems, we select multiple rep-
resentations tuned for different distinctions. These representations
are processed by distinctive feature detectors that are designed to
fire at important events or landmarks. These detectors each result in
a sparse, point process representation of the speech signal.
The decoding of the signal proceeds by integrating the firing of

the individual feature detectors in a hierarchical way. At the root of
the hierarchy is the sonorant-obstruent feature that is the most basic
and perceptually salient distinction among speech sounds. Vowels
correspond to peaks of the sonority profile and provide anchor points
that define syllable-sized analysis units. Probabilistic integration of
detector outputs occurs at such syllabic time scales on the rationale
that this is the smallest perceptually robust unit. Thus, the informa-
tion content of the signal within each analysis unit is coded in the
temporal statistics of the point process representation.

This foundation leads us to a system that performs reasonably
compared to a vanilla HMM baseline and is distinct from any other
built so far, though it shares many qualities with those inspired by
acoustic phonetics, distinctive features, and event landmarks [1][2].
The practical benefits to our approach include: (i) The simplicity
of our modular design may aid diagnostics and portability to new
languages and environments; (ii) The hierarchical approach leads to
fewer parameters than HMMs, allows reuse of training data for dif-
ferent distinctions, and allows efficient training with limited amounts
of transcribed data; (iii) The system design with its specialized de-
tectors and temporal coding provides a new way to characterize the
statistics of speech signals and reason about issues of invariance and
robustness.

2. SYSTEM ARCHITECTURE

2.1. Distinctive Feature Representation

The theory of distinctive features asserts that phonemes are not the
primitive building blocks of language; rather, each phoneme is a
complex of binary features that each distinguish natural classes of
phonemes sharing some common characteristic. While feature sys-
tems are rooted in phonology, they have natural articulatory interpre-
tations and corresponding acoustic and perceptual correlates, provid-
ing a useful computational starting point. Moreover, work by Gold-
smith [3] and others suggest that features have a hierarchical internal
organization. This structure implies nodes higher up in the tree cor-
respond to features that are somehow more basic or fundamental and
whose acoustic correlates are less context dependent. Furthermore,
features contained in separate branches of the hierarchy are inde-
pendent, allowing motivated context dependent processing. For our
purposes, we consider the hierarchy shown in the plane of Fig. 1 in-
volving the distinctive features sonorant [son], consonantal [cons],
continuant [cont], and nasal [nasal].

Consequently, our entry point into the interpretation of the signal
is a segmentation into sonorant and obstruent regions. Computation-
ally, this segmentation may be accomplished using any available ma-
chine learning method, though we choose support vector machines
(SVM) using the radial basis function (RBF) kernel. The hinge-loss
weight and RBF width parameters are chosen using holdout valida-
tion. We employ mel-frequency cepstral coefficients (MFCCs) span-
ning the full frequency range (0-8 kHz), computed in 10 ms windows
every 5 ms. The 39 MFCCs include one energy and 12 cepstral co-
efficients, along with their delta and acceleration (double-delta) co-
efficients. Once the SVM is trained, to determine the segmentation
we simply threshold the classifier output.
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Fig. 1. Schematic diagram of the hierarchical timing tier representa-
tion. Landmarks are indicated by vertical arrows.

2.2. Feature Detectors for Subsequent Processing

The distinctive features corresponding to the lower tiers of the fea-
ture hierarchy make further distinctions into groups that coincide
with the broad (manner) classes (vowels (V), approximants (A), na-
sals (N), fricatives (F), and stops (P)). For each, we build a detector
that ideally should fire only in the presence of the feature. Such
detectors may be analogized to neurons found in animals that fire
selectively when certain complex acoustic attributes are present in
the input stimulus [4][5].
There are three key ideas involved in the construction of a fea-

ture detector. First, for each feature of interest, a specialized acoustic
representation is constructed in which that feature best expresses it-
self. Second, in this representational space, a classifier is built that
is able to separate positive examples from negative ones on a frame-
level. Third, the output of the classifier is further processed to pro-
vide a sparse representation in time as a point process composed of
maxima points of the classifier outputs. At these points the features
are most strongly expressed; following the general philosophy of [1]
and others, we refer to these points in time as landmarks.
We end up with the hierarchical timing tier signal representation

shown in Fig. 1. A few aspects of this representation are worth not-
ing: (i) we have access to both the times and strengths at landmarks,
resulting in a marked point process for each tier; (ii) the represen-
tation is very sparse, in stark contrast to typical frame-based rep-
resentations of speech used in both traditional and landmark-based
systems; (iii) the information in the representation is now coded in
the temporal dynamics of these spikes and the statistics of inter-
spike times will be correlated with the durations between articulatory
events and ultimately the durations of various linguistic segments.
Given an imperfect sonority segmenter, we train each broad class

SVMwith examples across the entire phoneme space. To allowmax-
imal separability, our broad class SVMs also employ the RBF kernel.
Since each classifier processes the signal independently, their con-
struction can be specialized according to the individual broad class
content. While we choose MFCC features for the silence, fricative,
nasal, approximant and vowel SVMs, the window length, frame rate,
and frequency ranges used for each vary. Furthermore, our stop clas-
sifier employs energy and Wiener entropy parameters shown to be
successful in this setting [6]. Since integration is not carried out on

a common frame-level, we attain complete modularity of the system
components.
The output of each SVM is a real number for each frame of

the signal. In general, after thresholding this series, we define the
landmarks as the position of any local maximum of the SVM out-
put and the landmark strength as the corresponding maximal values.
The one exception made to this landmark picking strategy is for the
vowel detector; since the vowel landmarks will not be probabilisti-
cally determined, degenerate detections within a single vowel will
result in insertions. To address this complication, we adapt the re-
cursive “convex-hull” approach presented in [7] to compute a time-
dependent baseline. While the amplitude of the local maxima may
be large, under this scheme, neighboring candidates compete with
respect to a baseline computed in the local region. Therefore, small
variations of the detector output that would otherwise result in de-
generate landmarks are rejected with an appropriate choice of thresh-
old on the dynamic baseline-subtracted series.

2.3. Sonority Segment Decoding

The challenge now is to map the timing tier representation into a lin-
ear sequence of phonological units. If our feature detectors worked
perfectly, this task would be trivial: simply read off the output of the
feature detectors to obtain the corresponding broad class sequence.
However, in the face of non-zero error rates, we need to model the
statistical distribution of the pattern of firings associated with each
underlying sequence and choose the most likely sequence given that
pattern. The sonority segmentation defines a series of obstruent and
sonorant regions. The vowel landmarks further subdivide the sono-
rant regions into series of sonorant intervocalic regions (from now
on, we refer to them simply as intervocalic regions). Given the fea-
ture hierarchy, we may model obstruent and intervocalic regions in-
dependently.
Therefore, we require a probabilistic strategy for decoding the

contents of both obstruent and intervocalic regions. To accomplish
this, we have developed an approach for sonority segment decod-
ing (SSD) based on a maximum a posteriori (MAP) estimate of the
broad class sequence contained in each obstruent and intervocalic re-
gion. Consider an interval of a speech signal (T1, T2). The interval
duration T = T2 − T1, combined with the activity of N broad class
detectors, defines a set of observables O = {T, OX1

, . . . , OXN
},

where each OXi
denotes the observables for the class Xi detector.

These consist of LXi
time-strength pairs (one per detection) which

we denote

OXi
= {(tXi

1 , fXi

1 ), . . . , (tXi

LXi

, fXi

LXi

)}, (1)

where we have converted the absolute landmark times to the fraction
of the segment that passes before the landmark occurs. That is, if t
is an absolute landmark time, the corresponding observable is tXi =
(t− T1)/T .
At this point we can immediately write down a MAP estimate

of the segment broad class sequence, Bopt = arg maxB P (B|O).
However, in the context of our hierarchical landmark-based system,
we would like our model to also estimate which landmarks within
the region were correct and which were misfires. With this infor-
mation, we could later proceed with transcription refinement at true
landmarks only. To address this, we can define a set of indicator vari-
ables H = {HX1

, . . . , HXN
}, where HXi

= {hXi

1 , . . . , hXi

LXi

}

and hXi

k = 1 if the kth detection of class Xi is a true positive, and
0 otherwise. Applying Bayes’ rule, the MAP estimate takingH into
account becomes
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(Bopt, Hopt) = arg max
B,H

P (O|B, H)P (H|B)P (B). (2)

Since our approach is to first partition the utterance down to short
syllabic analysis units consisting of a limited number of phonemes,
we can accomplish optimization by simply calculating the likelihood
for all possibilities. If we attempted the same exhaustive approach
for word or sentence-long reconstruction units, this combinatoric
problem would become prohibitively cumbersome.
We can further simplify the general MAP estimation problem

of Eq. 2 with several conditional independence assumptions: (i) the
behavior of the broad class detectors are independent of each other
and the segment duration; (ii) the detection correctness pattern for
the broad class detectors are independent; (iii) detection times for a
particular class are independent of each other; (iv) strengths of the
detections for a particular class are independent both of each other
and the broad class sequence encountered; and, (v) detector strengths
and times are independent. While the extent of the validity of these
assumptions has not been rigorously established, they greatly reduce
the number of training sentences required to estimate the component
distributions. Thus, for a set of broad classes C, the optimization
problem of Eq. 2 reduces to

(Bopt,Hopt) = arg max
B,H

P (T |B)P (B)×

Y

X∈C

P (HX |B)

LXY

i=1

P (tX
i |B, hX

i )P (fX
i |h

X
i ).

(3)

Now, given an obstruent region, as determined by the sonority seg-
mentation, and the set of contained obstruent detector observables,
we need only compute Eq. 3 over possible B ∈ {sil, P, F}∗, where
C = {sil, P, F}. Within each sonorant region, L vowel landmarks
determine a series of L+1 intervocalic regions. For each such inter-
vocalic region, T is defined as the time elapsed either between adja-
cent vowel landmarks, between a landmark and an adjacent sonorant
region boundary, or the entire sonorant region if there are no vowel
landmarks. We perform the intervocalic optimization of Eq. 3 over
possible B ∈ {A, N}∗, where C = {A, N}.
This probabilistic framework requires the measurement of all

prior distributions involved in Eq. 3 for both obstruent and sonorant
intervocalic regions. These distributions can be obtained by simply
running the various system components on transcribed training data
and maintaining a record of the resulting observables involved in
each distribution in Eq. 3. We use the computationally straightfor-
ward histogram method to estimate discrete variable distributions;
for the scalar variables f , t, and T , we use uniform kernel density
estimation, which introduces three kernel bandwidth parameters.

3. EXPERIMENTAL RESULTS

3.1. Sonority Segmentation and Detector Performance

The support vector machine for the sonority segmenter was trained
on 100 randomly chosen TIMIT sx/i training sentences. Using 100
randomly chosen TIMIT sx/i test sentences, we recorded a frame-
level test error of 6.44%. Since the entire phoneme need not be
present in a given region for successful decoding, lack of segmen-
tation precision does not necessarily preclude success in later stages.
We find that for 95.0% and 89.3% of the sonorant and obstruent
phonemes, respectively, a majority of their duration fall in an ap-
propriate sonority segment. Note that phonemes that have an even

Table 1. Representation and training parameters for the landmark
detectors.

Detector Twin/Tstep Frange Etrain Ephn

Vowel 40/20 ms 0-4 kHz 10.3% 15.1%
Approx. 20/20 ms 0-8 kHz 19.2% 28.2%
Nasal 30/15 ms 0-8 kHz 6.0% 10.0%
Fricative 30/15 ms 0-8 kHz 6.9% 11.4%
Stop 35/5 ms N/A 6.2% 17.4%
Silence 20/10 ms 0-8 kHz 6.0% 7.8%

smaller fractional overlap with a correct segment still may be cor-
rectly decoded if the corresponding landmark is located there.
Creating each of the six landmark detectors required the con-

struction of a support vector machine trained to recognize frames of
the target class. We work with a set of 100 randomly chosen TIMIT
sx/i training sentences. For the vowel, approximant, nasal, fricative
and silence detectors, we again use MFCCs, but the window size
(Twin), step size (Tstep), and frequency range (Frange) parameters
vary according to Table 1. For the stop detector, we used the acous-
tic parameter prescription of [6] as an alternative to the MFCC repre-
sentation, though we modify the frame rate to reduce computational
costs. For training, all frames centered within the desired phoneme
boundaries are considered positive examples except in the case of
the stop detector, where only the closure-burst transition is consid-
ered a positive example. The frame-level training errors (Etrain)
and phoneme-level test error at the precision-recall break-even point
(Ephn) are also listed in Table 1.
There are three additional points to note regarding detector per-

formance: (i) a significant majority of errors are made between broad
classes of the same sonority superclass, validating our choice of the
sonorant feature as an appropriate initial point of speech segmenta-
tion; (ii) the vowel detector results in the lowest degenerate landmark
rate (21 degenerate vowel landmarks in 1210 vowel phonemes), a di-
rect result of the dynamic baseline algorithm; (iii) the weakest link
by far is the approximant detector, which will be a vital point of
future research.

3.2. Segment Decoding Performance

To separate the performance of the SSD model from that of the
sonority segmenter and vowel detector, we conducted experiments
using the actual sonority segmentations and vowel center points pro-
vided by the TIMIT transcription for both training and testing. Prior
distribution data was collected from 1000 randomly chosen TIMIT
sx/i training sentences. We evaluated the predictions relative to the
actual sequences present using minimum string edit distance align-
ment. We determined optimal accuracy bin width parameters using
an additional 100 training sentences.
We tested on all 1344 sx/i sentences contained in the TIMIT

test set. There are 42 possible broad class sequences that may lie
in any obstruent region and 12 possible sequences in any intervo-
calic region. Table 2 shows the transcription performance for sev-
eral variations of the decode procedure. The first is a naive mea-
sure of baseline performance, where we simply chronologically sort
the landmarks above the appropriate operating threshold in each ob-
struent region. The predicted sequence is simply the corresponding
broad classes of these landmarks. The second method is the stan-
dard implementation of probabilistic decoding outlined in this pa-
per. Finally, the two “Rank ≤ N” methods assume we have access
to an oracle that identifies the true obstruent or intervocalic region
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sequence if it is one of the N most probable sequences. In all of the
obstruent region decoding variations, we ignore silence landmarks
in the performance analysis since their presence is not necessary in
the final transcription.
The poor naive baseline performance illustrates the main prob-

lem with integrating multiple error prone detectors: correctness rates
average, but insertion rates add together. However, for obstruent re-
gions, SSD greatly cleans up false detections, admitting an insertion
rate of only 6% while maintaining the correctness rate of the base-
line. We find significantly lower intervocalic performance of both
the naive baseline and the standard decode relative to obstruent re-
gion decoding. This is largely due to the exceptionally poor isolated
performance of the approximant detector. Still, SSD more than dou-
bles intervocalic accuracy over the baseline. In both region types,
the ranking methods result in striking performance gains, portending
great improvements in this module of the system when higher-level
linguistic constraints are imposed.

3.3. Overall Performance

We now turn to the overall performance of our landmark-based broad
class recognizer, implementing the sonority segmenter, landmark
detectors, and probabilistic segment decoding. We tested our sys-
tem and four continuous CMU Sphinx-3 HMM variations, using
both context independent (CI) and dependent (CD) decoding with
either broad class (BC) or individual phoneme (Ph) 3-state models.
Each HMM was trained on all sx/i TIMIT training sentences, using
39-dimensional MFCCs, 8-mixture observation densities, no skip
transitions, and no language model or transition probability rescal-
ing. The phone-level HMM transcriptions are collapsed into broad
classes. Note that in our system, probabilistic segment decoding is a
context dependent approach, though the sonority segmentation and
vowel landmark detection methods are context independent. Our
model complexity is closest to the HMMs using broad class models,
as we only implement one detector per broad class.
Minimum string edit distance alignment was performed for all

five systems. Table 3 summarizes the broad class transcription per-
formance on the TIMIT test set. Our system accuracy falls in the
range of the various HMMs. The high insertion rates of the context
dependent HMMs are primarily a result of not applying a language
model to clean up spurious segments. Our system is a conservative
guesser, resulting in a remarkably low insertion rate even without
a language model; this is largely a result of landmark thresholding
before decoding.

4. CONCLUSION

We have presented a probabilistic framework for speech recognition
incorporating the ideas of distinctive feature hierarchies, landmark
detectors employing statistical learning, and point process temporal
pattern modelling. We believe this framework provides a promising
direction for research in speech recognition. Moreover, our system
implementation involves several design choices that are not neces-
sarily scientifically or computationally optimal, leaving significant
room for improvement.
First, the hard decisions made in the sonority segmentation and

vowel landmarks result in two significant bottlenecks. A more robust
solution is to employ probabilistic approaches here as well. Sec-
ond, improving individual landmark detectors would put less burden
on the integration procedure. Possible approaches include: (i) im-
plementing acoustic parameters as an alternative to MFCCs [7][8];

Table 2. Obstruent/intervocalic region decoding performance on
17525/12915 phonemes in 15766/36255 segments.

Obstruent Intervocalic
Method Acc Corr Ins Acc Corr Ins

Baseline 42.0 79.2 37.2 25.5 54.0 28.5
Standard 77.0 83.0 6.0 53.0 69.9 16.9
Rank ≤ 2 89.2 92.1 2.9 85.1 90.4 5.3
Rank ≤ 3 93.8 94.7 0.9 95.1 96.8 1.7

Table 3. Broad class transcription performance for our system vs.
various HMM approaches with no phone or word language model.

System Acc Corr Ins Del Repl

Our System 70.3 76.0 5.7 11.3 12.7
HMM, CI/BC 64.5 67.4 2.9 17.9 14.7
HMM, CD/BC 67.4 90.3 22.8 1.7 8.0
HMM, CI/Ph 68.9 79.4 10.5 6.1 14.5
HMM, CD/Ph 73.3 91.7 18.3 1.7 6.6

(ii) individually addressing specific phoneme-level detector inade-
quacies; (iii) implementing broad class transition detectors; and (iv)
using alternative machine learning techniques. Third, the integra-
tion model may be improved; possible strategies include: (i) alter-
native prior distribution estimation techniques (e.g. parametric mod-
elling or non-parametric kernel-smoothing), (ii) limiting the num-
ber of independence assumptions, (iii) more sophisticated landmark
time normalization methods, and (iv) alternative statistical frame-
works (e.g. [5]). Fourth, our SSD method provides exceedingly
accurate N -best estimates, indicating a performance improvement
similar to HMM methods when a language model is applied. Last
but not least, we would ultimately like to extend the methods pre-
sented in this paper to a full phonetic transcription. This will involve
expanding the distinctive feature hierarchy to distinguish between
the individual phonemes within each broad class.
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