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Abstract 
The modulation spectra of speech features are often distorted due 
to environmental interferences. In order to reduce this distortion, 
in this paper we propose several approaches to normalize the 
power spectral density (PSD) of the feature stream to a reference 
function. These approaches include least-squares temporal 
filtering (LSTF), least-squares spectrum fitting (LSSF) and 
magnitude spectrum interpolation (MSI). It is shown that all the 
proposed approaches can effectively improve the speech 
recognition accuracy in various noise corrupted environments. In 
experiments conducted on the Aurora-2 noisy digits database with 
a complex back-end, these new approaches provide an average 
relative error reduction rate of over 40% when compared with the 
baseline MFCC processing. 
Index Terms : robust speech recognition, feature normalization, 
modulation spectrum  

1. Introduction 
The performance of a speech recognition system is often degraded 
due to the mismatch between the training and testing 
environments. One category of approaches to minimize this 
mismatch is focused on trying to find a robust feature 
representation for speech signals so that it is less sensitive to 
various corrupted acoustic conditions. Relative Spectral (RASTA) 
[1], Cepstral Mean Subtraction (CMS) [2], Cepstral Mean and 
Variance Normalization (CMVN) [3], integration of CMVN and 
Auto-regressive moving average filtering (MVA) [4] are typical 
examples of this category of approaches, in which the time 
trajectories of speech features are filtered so as to alleviate the 
harmful effects of various distortions.  
In contrast to the above temporal filtering techniques, where the 
filter form is fixed and is somewhat independent of the applied 
speech features, the temporal filters can be tuned in order to be 
suitable for the speech feature characteristics or the environment 
based on some certain criteria, such as Linear Discriminant 
Analysis (LDA) [5], Principal Component Analysis (PCA) [6] and 
Minimum Classification Error (MCE) [6]. These data-driven 
temporal filters have shown excellent performance in enhancing 
the robustness of speech features and improving the speech 
recognition accuracy. 
Recently, Haizhou Li et al proposed a new temporal filter design 
scheme [7], called Temporal Structure Normalization (TSN), 
which aims to normalize the power spectral density (PSD) of 
speech feature streams in an utterance to a reference PSD. The 
reference PSD is obtained by averaging the PSDs of all the clean 
speech utterances. Different from the temporal filters previously 
mentioned, here the obtained filter varies utterance by utterance so 
that the filter can be dynamically adapted to the acoustic 
environment for each utterance. The TSN filters are reported to be 
very effective in improving the recognition accuracy when the 
speech features are first processed by CMVN or MVA. 

In the TSN filter design, once the magnitude response of the filter 
is obtained, the Inverse Discrete Fourier Transform (IDFT) is 

performed to obtain the initial filter coefficients. Next, only the L
central coefficients are extracted, where L is a predefined filter 
length. These L coefficients are smoothed by a Hanning window, 
and they are then scaled so that the sum of these coefficients is 
normalized to one to ensure that the DC gain of the resulting filter 
is unity. 
The algorithm to obtain these TSN filters as mentioned above is 
very efficient in implementation. However, according to our 
observations, it has some points which may be further improved. 
First, the truncated and smoothed IDFT-processed coefficients are 
just a rough approximation of the optimal ones that well match the 
desired frequency response. Second, the process to normalize the 
sum of the filter coefficients to one keeps the DC component of 
the filtered feature stream unchanged with respect to that of the 
original one. This implies the PSD of the filtered feature stream 
approaches a scaled version of the reference PSD, and the scaling 
factor varies utterance by utterance. Therefore, this process seems 
to be inconsistent with the original objective that the resulting 
PSD should approach the reference PSD. Furthermore, since the 
additive and/or channel noise may cause a scaling effect on the 
PSD of the original features, to confine the DC gain of the filter to 
unity seems to fail to deal with this scaling effect. Finally, in [7] 
the TSN filters are designed only for MVN- or MVA-processed 
MFCC features. It is wondered if they are also effective for 
original MFCC features.  
Motivated by the above observations for the TSN filter design, in 
this paper we propose several approaches which attempt to 
normalize the PSD of the original MFCC feature streams to a 
reference pattern. In the first approach, least-squares filtering 
(LSF), given the magnitude response of the filter as in the TSN 
processes, we design the temporal filter so that it is optimal in a 
least-squared sense. The feature stream is then filtered by the 
obtained temporal filter. Next, in the second approach, least-
squares spectrum fitting (LSSF), the new feature stream is 
obtained so that its modulation spectrum has the best 
approximation to a target spectrum in the least-squares sense, in 
which the target spectrum is created by the reference PSD and the 
modulation spectrum of the original feature stream. In the third 
approach, magnitude spectrum interpolation (MSI), the magnitude 
part of the target spectrum is obtained by linearly interpolating a 
reference magnitude spectrum, while the phase part directly comes 
from the modulation spectrum of the original feature stream. Then 
the new feature stream is obtained by Inverse Discrete Fourier 
Transform (IDCT) of the target spectrum. Experimental results 
conducted on the Aurora-2 database show that the proposed three 
approaches are capable of improving the recognition accuracy of 
the original MFCC features under a wide range of noise-corrupted 
environments. Furthermore, it is shown that they outperform TSN 
significantly.  

The remainder of this paper is organized into 4 sections. In 
section 2, the proposed three approaches for normalizing the PSD 
of the feature stream are described. Section 3 describes the 
experimental environment. In section 4, we present the 
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experimental results and compare the proposed approaches with 
some other techniques. Finally, a brief concluding remark is given 
in section 5. 

2. Modulation Spectrum Normalization Approaches for 
MFCC Features 

Consider using the Mel-scaled filter-bank cepstral coefficients 
(MFCC) for speech recognition. Let mx n  be the mth cepstral 
coefficient of the nth frame of an utterance. As a result, we have 
M feature streams,  

0 1mx n n N , 0 1m M ,                               (1) 

where M  is the number of cepstral coefficients within a frame 
and N  is the number of frames of the utterance. Assume that 
these features are noise-corrupted, and it is expected to obtain a 
set of new feature streams my n  in which the noise effect is 

alleviated. In our case here, each feature stream mx n  is 

processed so that the resulting my n  has a two-sided power 
spectral density (PSD) close to a reference pattern,  

2
, 0 2 1

2m k kZ k k P
P

,                                    (2) 

where k  is the normalized frequency 0 2k , and 2P  is 
the number of frequency bins. Note that the absolute sign  is 
used on m kZ to emphasize that each item in the reference 
pattern is real and nonnegative.  As a result, the reference 
magnitude spectrum of my n  becomes 

m k m k m k XX kY X Z P ,                                  (3) 

where m kX  and XX kP  are the 2P-point Discrete-Fourier 

Transform (DFT) and the two-sided PSD of mx n ,
respectively. 
Following [7], here the reference PSD m kZ  is obtained by 

averaging the PSDs of the mth feature streams for all clean 
utterances in the training database. For the sake of compact 
notation, we omit the subscript m  in the later discussions. 
In the following, we propose three approaches to determine the 
normalized feature stream y n . In the first approach, least-
squares temporal filtering (LSTF), a temporal filter is designed 
and performed on the original feature stream x n . That is, we 
process the features in the temporal domain in order to make them 
well matched to a reference pattern in the modulation frequency
domain. However, in the next two approaches, least-squares 
spectrum fitting (LSSF) and magnitude spectrum interpolation 
(MSI), we perform this pattern matching directly in the 
modulation frequency domain. 

2.1 Least-Squares Temporal Filtering (LSTF)
In this approach, a FIR filter with L-point impulse response, 

0 1h n n L  , is designed for the feature stream x n .
First, the two-sided PSD of x n  is calculated and denoted as  

2
, 0 2 1

2XX k kP k k P
P

.                                    (4) 

Note that XX kP  has the same length of the reference pattern 

kZ  in eq. (2). To equalize the PSD XX kP  to kZ , the 
required magnitude response of the filter is 

2
,  , 0 2 1

2k k XX k kH Z P k k P
P

,   (5) 

Then, given the magnitude response kH , the filter 

coefficients 0 1h n n L  are determined by the least-
squares method [8]. The obtained filter coefficients are symmetric 
to ensure a linear-phase response, and it has the best 
approximation to the desired frequency response kH  in 

the least-squares sense. Finally, the new feature stream y n  is 
obtained by convoluting x n  and h n .
Note that in this approach, most of the procedures are identical to 
those in TSN, except that here the filter coefficients are obtained 
by the least-squares method and the sum of the filter coefficients 
is not normalized to one. 

2.2 Least-Squares Spectrum Fitting (LSSF) 
In this approach, the new feature stream y n  is obtained so 
that the squared error between the 2P-point DFT of y n  and a 
reference spectrum is minimized. The 2P-point reference 
spectrum is constructed by 

exp ,   0 2 1k k X kY Y j k P ,                 (6) 

where kY  is defined in eq. (3), and X k  are the phase 
parts of the 2P-point DFT of x n . That is, we attempt to keep 
the phase spectrum of x n  while update the PSD of x n  so 

that it is close to the reference PSD kZ  in eq. (2).  Since in 

general 2N P , we cannot obtain the N-point y n  directly 

from the IDFT of kY . Here, by imposing a constraint that  

2P N , we obtain the new feature stream y n  so that the 
corresponding spectrum fits the reference spectrum in eq. (6)  in 
the least-squares sense: 

222 1 1
2

0 1
0 0

min
m

nkP N j
P

ky n n N
k n

y n y n e Y                  (7) 

The above equation can be re-written in vector-matrix form as 
2

minW
y

y y Y ,                                                                    (8) 

where

0 1 1
T

y y y Ny ,

0 1 1
T

y y y Ny

0 1 2 1

T

PY Y YY ,

andW is an 2P N matrix whose ,m n -th term is 

2
exp

2mn

mn
W j

P
                                                               (9) 

Note that each component of the vector y  is real, and thus eq. (8) 
can be re-written as 
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2

min R R I IW j W
y

y y Y y Y

2 2
min R R I IW W
y

y Y y Y                                        (10) 

where RW  and RY  are the real parts of W and Y , respectively, 

and IW  and IY  are the imaginary parts of W and Y ,
respectively. As a result, solving y in eq. (10) becomes a classical 
least-squares (LS) problem, and the solution is 

1T T T T
R R I I R R I IW W W W W Wy Y Y .                             (11) 

As a result, the vector y in eq. (11) constitutes the final feature 
stream y n .
2.3 Magnitude Spectrum Interpolation (MSI) 
In this approach, the new features stream y n  is obtained as the 
N-point IDFT of an N-point reference spectrum, denoted as 

2
, 0k k

k
Y k N

N
.                                          (12) 

The phase part of the kY  can be directly taken from the N-

point DFT of x n . However, since in general 2N P ,  the 

2P -point kY  in eq. (3) cannot be directly used as the 

magnitude part of kY . Here we obtain an approximate 

estimate of kY  by linearly interpolating kY . Note 

that since kY  must be symmetric with its central tap 

(except for 0Y ) , the 2 1N  interpolating points are first 

obtained as 0 2kY k N  from the first 1P points

of kY , and then the remaining 2 1N N  points of  

kY  are obtained to meet the symmetry requirement. That 

is,
,   2 1 1k N kY Y N k N .                    (13) 

As a result, the N-point reference spectrum is constructed by 
exp ,   0 1Xk k kY Y j k N ,               (14) 

where X k  are the phase part of the N-point DFT of x n .

The new feature stream y n  is then obtained as the N-point

IDFT of kY :
21

0

1
,     0 1

nkN j
N

k
k

y n Y e n N
N

.                       (15) 

3. Experimental Setup 
We perform recognition experiments on the AURORA-2 database 
[9]. For the recognition environment, three sets of utterances 
artificially contaminated by different types of noise (subway, 
babble, etc.) and different SNR levels (from 20dB to -5dB) are 
prepared. Each utterance in the clean training set and three noise-
corrupted testing sets is first converted into a sequence of 13-
dimensional mel-frequency cepstral coefficients (MFCC, c0-c12). 
The PSD of each feature stream for each of the 8440 utterances in 

the clean training set is estimated. The reference PSD in equation 
(1) is obtained by averaging all the 8440 PSDs for each feature 
stream. Following the specifications in [7], the PSD is estimated 
using the Yule-Walker method with the autoregressive model 
order being 15. The number of frequency bins, 2P  in  eq. (1), is 
set to 256 in most approaches, except that in the LSSF approach, 
2P is set to 1024 so that it can be always greater than N, the 
number of frames in an utterance. The filter length L for the filters 
designed by LSTF and TSN is set to 21. The 13-dimensional 
feature sequences in the clean training set and the three noise-
corrupted testing sets are individually processed by various post-
processing approaches mentioned previously. The resulting 13 
new features, plus their first and second order derivatives, are then 
the components of the finally used 39-dimensional feature vector. 
With these new feature vectors in the clean training set, the 
HMMs for each digit and silence are trained following the 
Microsoft complex back-end training scripts [10]. Each digit 
HMM has 16 states and 20 Gaussian mixtures per state. 

3. Experimental Results 
Fig. 1 (a)-(e) shows the normalized PSD of the first MFCC feature 
c1 of an utterance after various PSD normalization schemes for 
three SNR levels, clean, 10dB and 0dB. TSN-1 in Fig. 1(a) is the 
original version of TSN in [7], in which the sum of the filter 
coefficients is normalized to one. TSN-2 in Fig. 1(b) follows all 
the procedures in TSN-1 except that the last step to normalize the 
filter coefficients is skipped. Fig. 1(a) shows that only the 
normalized PSD for the clean case approaches the reference PSD, 

Figure 1. The normalized c1 PSD curves of an utterance 
("FAK_6654599A.08" in the Aurora-2 database) after various 
PSD normalization schemes for three SNR levels, clean, 10dB and 
0dB.
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while the other two for the SNR=10dB and 0dB cases, 
respectively, significantly deviate from the reference PSD. This 
phenomenon supports our comments previously that the original 
TSN fails to deal with the scaling effect on the PSD caused by 
noise for plain MFCC features. However, in Fig. 1(b), all the 
PSDs for different SNR cases are very close to the reference PSD. 
Similar results can be also observed in Fig. 1(c)-(e), which shows 
that all the proposed PSD normalization approaches, LSTF, LSSF, 
and MSI, are capable of alleviating the PSD deviation caused by 
noise. 
The recognition results for various approaches performed on the 
plain MFCC features are summarized in Table 1. For the purpose 
of comparison, the results of CMVN and RASTA are also shown 
in this table. From this table, some observations can be made as 
follows: 
1. Although TSN-1 reveals very good improvement for MVN- 

and MVA- processed MFCC features as reported in [7], it does 
not improve the plain MFCC very significantly. The possible 
reason is that the scaling effect on the PSD by noise has been 
removed or alleviated in the MVN- and MVA- processed 
MFCC features, while it still exists in the plain MFCC, and 
TSN-1 does not process it properly as shown in Fig.1 (a).  

2. By skipping the filter coefficient normalizing procedure in 
TSN-1, TSN-2 outperforms TSN-1 in most cases, and provides 
an absolute improvement rate of 8.09%.  

3. The proposed LSTF provides better results than TSN-2, which 
implies the filter designed by LSTF, which possess a closer 
approximation to the desired magnitude response in (5), acts 
better than that designed by TSN-2.  

4. The proposed LSSF and MSI give very outstanding 
improvements for MFCC. MSI performs better than RASTA, 
TSN-1, TSN-2 and LSTF, and it acts as well as CMVN. LSSF 
achieves the highest accuracy among all approaches and it 
provides an absolute improvement rate of 15.35%.  This 
implies performing the PSD normalization directly in the 
modulation frequency domain brings about better results. 

Method Set A Set B Set C Avg. AR RR 
Baseline 72.46 68.31 78.32 71.97 - - 
RASTA 76.05 79.58 76.48 77.55 5.58 19.89
CMVN 85.07 85.57 85.63 85.38 13.41 47.85
TSN-1 73.64 70.48 77.18 73.08 1.11 3.97 
TSN-2 80.06 82.24 75.68 80.06 8.09 28.86
LSTF 83.04 84.47 81.35 83.02 11.30 40.32
LSSF 86.72 87.88 87.43 87.33 15.35 54.78
MSI 84.65 86.63 85.70 85.65 13.68 48.81

Table 1. Accuracy (%) achieved by various approaches for 
Aurora-2 task averaged across the SNR between 0 and 20dB, 
where TSN-1 is TSN with filter coefficient normalization, and 
TSN-2 is TSN without filter coefficient normalization. AR (%) 
and RR (%) are the absolute and relative error rate reductions over 
the baseline.

Since CMVN performs very well as shown in Table 1, we attempt 
to integrate our proposed LSTF, LSSF, and MSI with CMVN to 
see if further improvements can be achieved. That is, the MFCC 
features are first normalized by CMVN, and then processed by 
either of the three approaches. Note that here the reference PSDs 
used in the three approaches are created by the CMVN-processed 
features. 

Table 2 shows the recognition results for the proposed approaches 
performed on CMVN-processed features. The results of MVA, 
which combines ARMA filtering and CMVN, are also listed in the 
table for comparison. From this table, it is shown that integrating 
either of our proposed approaches with CMVN brings very 
excellent recognition performance. The three approaches enhance 
CMVN by improving the accuracy of about 4.5%. Also, they 
perform better than the ARMA filtering in all cases. Finally, MSI 
becomes the best of the three approaches, although the 
performance differences among them are relatively insignificant. 

Method Set A Set B Set C Avg. AR RR 
CMVN 85.07 85.57 85.63 85.38 - - 

CMVN+LSTF 89.65 90.49 89.11 89.88 4.50 30.76
CMVN+LSSF 89.12 90.17 89.16 89.55 4.17 28.50
CMVN+MSI 89.83 90.80 89.66 90.18 4.80 32.85

CMVN+ARMA 88.25 88.82 88.61 88.55 3.17 21.67
Table 2. Accuracy (%) achieved by various approaches for 
Aurora-2 task averaged across the SNR between 0 and 20dB. AR 
(%) and RR (%) are the absolute and relative error rate reductions 
over CMVN.  

5. Concluding Remarks 
In this paper, we follow the concept of temporal structure 
normalization (TSN) in [7] and propose several new modulation 
spectrum normalization techniques for speech features. Significant 
improvements in recognition accuracy have demonstrated the 
effectiveness of these proposed approaches. In addition, 
experimental results show that further improvement can be 
achieved when these newly proposed approaches are integrated 
with the technique of cepstral mean and variance normalization 
(CMVN). 
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