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ABSTRACT
Automatic Speech Recognition (ASR) systems continue to make
errors during search when handling various phenomena including
noise, pronunciation variation, and out of vocabulary (OOV) words.
Predicting the probability that a word is incorrect can prevent the
error from propagating and perhaps allow the system to recover.
This paper addresses the problem of detecting errors and OOVs for
read Wall Street Journal speech when the word error rate (WER) is
very low. It augments a traditional confidence estimate by introduc-
ing two novel methods: phone-level comparison using Multi-String
Alignment (MSA) and word-level comparison using phone-to-word
transduction. We show that features from phone and word string
comparisons can be added to a standard maximum entropy frame-
work thereby substantially improving performance in detecting both
errors and OOVs. Additionally we show an extension to detecting
English and accented English for the Language Identification (LID)
task.

Index Terms— Speech Processing, Speech Recognition,

Maximum Entropy Methods

1. INTRODUCTION

Automatic Speech Recognition (ASR) systems make errors

during search when handling various phenomena and it is use-

ful to predict whether each hypothesized word is incorrect. A

confidence estimate predicts the reliability of the recognition

result, in this case the probability of error at the word level.

It enables the system to discard a result and can prevent an

error from propagating in applications such as Spoken Infor-

mation Retrieval or Speech Translation. Standard methods

use a rich lattice that is re-normalized to provide a poste-

rior probability, which acts as a confidence estimate (CE)[1].

We compare against a baseline estimate described in [1] as

’Cmax’, which uses the maximum a posterior probability af-

ter re-normalization. Recently, state-of-the-art confidence es-

timation predicts the probability of error using several obser-

vations taken from a recognition lattice to train a statistical

model such as a maximum entropy classifier [2].

Recognition errors can result from issues including acous-

tic artifacts (e.g. noise, poor articulation) or language arti-

facts (e.g. rare words, out of vocabulary words (OOV)). Re-

gardless of the quality or relevance of the input, an ASR sys-

tem will emit a sequence of words that is the best match to

the acoustics. State-of-the-art systems currently apply all the

information sources at their disposal simultaneously in this

decoding process. These sources consist of the (context de-

pendent) acoustic models, the pronunciation dictionary, and

the language model, which are combined in the Finite State

Transducer paradigm [3]. During the decoding process, each

source influences the recognition result for better or worse.

We investigate, beginning with the Johns Hopkins University

Summer Workshop 2007 (JHUWS07), whether influence of

linguistic constraints (from the language model and lexicon)

compels the ASR system to make errors. In the OOV case

this is true by definition as the spoken word is not the lexicon

and therefore cannot be hypothesized, but the theory extends

to other cases. This thesis is tested by considering the out-

put of two systems in parallel, one with linguistic constraints

(strong recognizer, main ASR system) and one without (weak

recognizer, phone recognizer). If the two systems produce in-

consistent output (e.g. acoustic likelihood, phones) during a

segment of speech then perhaps the strong system has made

an error (due to an OOV or otherwise).

The bulk of research completed during the workshop dealt

with frame-based comparisons, whereas this work considers

string-based comparisons at the word and phone-level. We

examine how the one-best word and phone strings coming

from the ASR system become altered during decoding and

differ from the one-best phone string without linguistic con-

straints and the word string that is produced from a phone-to-

word transducer operating on the unconstrained phone stream

(described below). While it is known that multiple sources

of information help in detecting errors and OOVs [4, 5] (e.g.

language model factor tuning), this work is only similar in

that regard and in the idea that the language model plays a

role in ASR errors. We introduce two novel methods for esti-

mating confidence: phone level comparison based on Multi-

String Alignment (MSA), and word level comparison based

on phone-to-word transduction. These two methods construct

a coarse-to-fine (e.g. word-to-phone) grain space for selecting

features for a maximum entropy (MaxEnt) framework. We
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show that they provide complementary information, which

combines well with a standard confidence measure. Also, our

features have the benefit of not requiring a lattice, which was

a major concern in [2].

2. STRING COMPARISONS

Figure 1 describes the entire comparison procedure through

an example taken from our test set originating in the Wall-

street Journal Part 1 test set. We consider two types of phone

strings: 1) those output by a linguistically unconstrained rec-

ognizer, denoted ’HMM’; 2) those implied by the word level

output of a fully constrained recognizer, denoted ’ASR’. Line

(1) shows the correct transcript, which includes two OOVs:

numerous, art. Line (2) shows the output of the ASR system,

which includes errors: new, morris, are, part. Line (3) shows

the output after transducing the HMM phone string to words.

It can be seen that the ASR and transduced word strings dif-

fer exactly in the regions where the ASR output contains er-

rors. There are three lines of phone strings, each letter repre-

sents one English phone: (4) corresponds to the phone string

that comes from standard 3-gram word decoding, (6) corre-

sponds to the string using the same acoustic models but with

a 2-gram phonotatic language model, (5) corresponds to the

phone string that results from altering the HMM phone string

in order to get the words in line (3). For example, the trans-

ducer had to consume the phones ’m’, ’R’, and ’s’ from the

HMM phone string in order to produce ’new works’. Again,

the various strings differ in the regions where the ASR sys-

tem has erred. The ASR system provides the word boundary

in terms of phones, which can be seen as a segmentation in

lines (7), (8), and (9).

Fig. 1. Word and Phone-Level Alignment.

2.1. Phone-Level Comparison

Initially, we have two strings of phones (e.g. lines (4) and (6)

in Figure 1) that are variable length and must be aligned be-

fore comparison. Although in this case the alignment could

be done with a standard Levenshtein distance, we will con-

sider aligning three strings with the possibility of a varied al-

phabet and employ symbol dependent alignment cost. Our

previous work [6] applies techniques in Bioinformatics for

aligning multiple streams of phones using MSA, and is sim-

ilarly used here to provide a feature space. In Figure 1, we

can see the result of the MSA using three strings and note the

additional symbol ’-’, which denotes an insertion.

Feature Description
W Does the ASR word match in the transduced sequence?

P Normalized number of insertions, deletions, substitutions,

and cost in alignment of transduced phones to ASR phones

J Normalized number of insertions, deletions, substitutions,

and cost in alignment of HMM phones to ASR phones

D Number of repeated phones within word

R #HMM phn /#ASR phn

C Cmax

Table 1. Feature List

2.2. Word-Level Comparison

Our word-level comparison features are based on taking a de-
coded phone sequence (either from a full blown ASR system
or from a more lightweight phone recognizer), converting it
to words, and then comparing these words with those of the
recognizer. The primary difference between this two-step ap-
proach and the standard recognition process is that it operates
at the phone level rather than the frame level. The input is
a 1-best phone string; of course, there may be subsequences
within this string which cannot be matched to words, and an
error model is used to assign costs to the corrections which
are necessary in order to recover words. The process can be
understood in terms of a noisy channel model in which we as-
sume that a speaker utters an intended word sequence with an
underlying intended phone sequence, and we receive a cor-
rupted version of the phone sequence. We then want to re-
cover the intended words. This can be more precisely stated
if we let wi denote the intended words, pi denote the intended
phone sequence, and pc denote the corrupted phone sequence.
The job of the decoder is then to determine

arg max
w

P (w|pc) = arg max
w

P (w)P (pc|w)

= arg max
w

P (w)
X

pi

P (pi,pc|w)

= arg max
w

P (w)
X

pi

P (pi|w)P (pc|pi,w)

≈ arg max
w,pi

P (w)P (pi|w)P (pc|pi)

The components here have straightforward interpretations:

P (w) is given by the language model; P (pi|w) by the pro-

nunciation model; and P (pc|pi) by an error model. In this

work, the error model contains insertion, deletion and substi-

tution probabilities at the phone level. The decoding process

can be implemented in terms of a transduction from phones

to words, and further details are available in [7]. The intu-

ition behind doing word comparisons based on a transduction

of the phone sequence is that when correct phone sequences

are present, the transduction process will tend to produce the

same output as the ASR system, but where OOVs or mistakes

are present, the transducer will have to guess and is unlikely

to produce the same output as the recognizer. In this sense, it

is similar to the method of language model jitter investigated

in [4].
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3. EXPERIMENTAL SETUP
3.1. Corpus

Our setup mirrors the JHUWS07, with the exception of using

a 3-gram ASR decoder rather than a 2-gram, and is described

in detail in the final report of the workshop. For acoustic

training, the ASR system used the Switchboard Corpus ob-

tained from the Linguistic Data Consortium (LDC). For de-

velopment and testing, we use the Wallstreet Journal (WSJ)

Corpus also obtained from LDC. We show results for a com-

bined test set of WSJ0 and WSJ1 (about 19000 words) using

a standard 5K vocabulary associated with WSJ0 and a 3-gram

ASR decoder and 3-gram transducer. The word error rate was

approximately 12% with an OOV rate of 5%.

3.2. Setup

The ASR and HMM phone strings as well as the ASR word

string were generated with a system derived from AMI[DA]

LVCSR [8]. The baseline score, Cmax, comes from nor-

malizing the lattice as in [1] and represents a conventional

confidence estimate. Our maximum entropy approach com-

putes the probability that a word is incorrect or OOV based

on a set of word-level features. Because the ASR system pro-

vides time-marks, we can segment the phone strings by words

(Lines 7-9 in Fig. 1), thus allowing us to define word-level

features based on both phone and word strings. The features

we use are listed in Table 1. The MaxEnt features associ-

ated with the ’Cmax+phn:ASR+HMM’ curve in Figure 2 and

Figure 3 are extracted by comparing the lines (4) and (6) in

Figure 1, whereas features associated with the other curves

(besides Cmax) use all three phone strings. These features

are shown in Table 1 as ’P, ’J’, ’D’, and ’R’. Features ’P’ and

’J’ are simple substitutions, insertions, and deletions to go

from one phone string to another normalized by the number

of phones in a word. Also, the cost feature comes from tak-

ing the negative log probability of confusion from the HMM

phone confusion matrix after decoding the development data.

’D’ counts the number of times a phone is repeated, and ’R’

simply counts the ratio of the number of phones in two strings.

For the results in Figure 2 and Figure 3, the curves with

’TD:HMM’ show results transducing the HMM phone string,

and those with ’TD:ASR’ show results transducing the ASR

phone string. The word comparison features are extracted

from a simple alignment between the lines (2) and (3) in Fig-

ure 1 with the capitalized words in line (2). These features are

shown in Table 1 as ’W’ for a binary word match. In all of our

experiments, we combine features using a MaxEnt classifier

similar to the one described in [2]. For example, consider the

word ’part’ in the ASR hypothesis in 1 line (2). Feature ’W’

would be given a value of 1 since there’s a mismatch between

lines (2) and (3). Features P would include the 0.5 for inser-

tions (2/4), 0.25 substitutions, and a cost of 1.14 (1.27 ins ’p’,

1.60 sub ’a’ for ’A’, 1.53 ins ’r’, 0.17 sub ’t’ for ’t’). It can be

seen that these features reflect how the various strings differ

in regions of ASR error.
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Fig. 2. ERROR Detection DET Curve.

4. RESULTS
4.1. Error and OOV Detection Results

Figures 2 and 3 show Decision Error Tradeoff (DET) curves,

a standard for performance analysis used in National Institute

of Standards (NIST) evaluations. In both figures, the solid

line furthest from the origin shows the results using the base-

line, Cmax. Figure 2 describes the performance when trying

to detect all errors, where an error is defined by using a Leven-

shtein alignment from the ASR transcript to the reference. In

Figure 3, only errors which overlap with an OOV by 5 or more

frames are considered. In both figures, adding information

from phone comparison and word comparison substantially

improve detection performance. We can see an improvement

by adding phone-level comparison information, and a further

improvement by adding word-level comparison information.

For example, accepting only 2% false alarms, this method de-

tects 40% of the errors and 30% of the OOVs compared to

25% and 15% using the baseline, respectively.

5. EXTENSION TO LID
We apply this comparison technique to detect English in a

language recognition evaluation (LRE) setting. In the 2005

NIST LRE several teams did poorly detecting English be-

cause many of the English segments were spoken with an In-

dian accent. The theory above applies here: given a phone

string, if it is English then the ASR decoder and the trans-

ducer shouldn’t have to alter many phones to produce an En-

glish word output, and should be similar on the phone and

word levels. On the contrary, if the language is not English,

then many changes should be made to the phone string in or-

der to produce English words (which we should be able to

detect). Using the LID setup in Brno [9], we can see the
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Fig. 3. OOV Detection DET Curve.

results of adding the features described above to a state-of-

the-art Gaussian Mixture Model (GMM) (trained with Max-

imum Mutual Information)/Parallel Phone Recognition with

Language Modeling (PPRLM) English detection system. In

Figure 4, half of the LRE 05 data were used to train a MaxEnt

classifier, and results are shown on the other half. The dotted

lines are for Indian accented English, the solid for American

English. Although this is preliminary work, the results look

quite promising.

6. SUMMARY AND DISCUSSION
This paper studies the utility of comparing phone streams of a

conventional ASR output with varied linguistic constraint and

converting from phones-to-words in order to detect errors and

OOVs. We use a phone-to-word transducer for word recov-

ery, which requires only a one-best phone string from the first

stage and uses an error model on phones to recover from mis-

takes in the input. String based comparisons without a lattice

can effectively detect errors and OOVs for WallStreet Journal

speech. Coarse-to-fine comparison using a phone strings from

an ASR system with and without a traditional decoder and a

phone-to-word transducer facilitates robust confidence esti-

mation, even in the difficult setting of detecting errors with a

low WER. Furthermore, we successfully apply this technique

to another task: detecting English in a LID setting.

7. ACKNOWLEDGMENTS
The authors wish to thank our colleagues Milind Mahajan for his

help with the conditional MaxEnt training. This research was per-

formed while one of the authors was on appointment as a U.S. De-

partment of Homeland Security (DHS) Fellow under the DHS Schol-

arship and Fellowship Program, a program administered by the Oak

Ridge Institute for Science and Education (ORISE) for DHS through

an interagency agreement with the U.S Department of Energy (DOE).

  0.1   0.2  0.5    1     2     5     10    20    40  
  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

 

 
Indian English: PRLM + GMM
Indian English: PRLM + GMM + TD
American English: PRLM + GMM
American English: PRLM + GMM + TD

Fig. 4. English Detection (LRE 05) DET Curve.

ORISE is managed by Oak Ridge Associated Universities under

DOE contract number DE-AC05-06OR23100. All opinions expressed

in this paper are the authors and do not necessarily reflect the poli-

cies and views of DHS, DOE, or ORISE.

8. REFERENCES

[1] F. Wessel, R. Schluter, K. Macherey, and H. Ney, “Confidence

measures for large vocabulary continuous speech recognition,”

IEEE Trans. on Speech and Audio Processing, vol. 9, no. 3,

2001.

[2] C.M. White, J. Droppo, A. Acero, and J. Odell, “Maximum

entropy confidence estimation for speech recognition,” in Proc.
ICASSP, 2007.

[3] M. Mohri, F. Pereira, and M. Riley, “Weighted finite state trans-

ducers in speech recognition,” Computer Speech and Language,

vol. 16, no. 1, 2002.

[4] Lin Lawrence Chase, Error-Responsive Feedback Mechanisms
for Speech Recognizers, Ph.D. thesis, 1997.

[5] I. Bazzi, Modeling Out-of-Vocabulary Words for Robust Speech
Recognition, Ph.D. thesis, 2002.

[6] C.M. White, I. Shafran, and J-L. Gauvain, “Discriminative clas-

sifiers for language recognition,” in Proc. ICASSP, 2006.

[7] G. Zweig and J. Nedel, “Empirical properties of multilingual

phone-to-word transduction,” in Tech. Report MSR-TR-2007-
125, 2007.

[8] Thomas Hain, Luks Burget, John Dines, Giulia Garau, Martin

Karafit, Mike Lincoln, and Vincent Wan, “The AMI Meeting

Transcription System,” in Proc. NIST Rich Transcription 2006
Spring Meeting Recognition Evaluation Worskhop, 2006.

[9] Matejka Pavel, Burget Lukas, Schwarz Petr, and Cernocky Jan,

“Brno university of technology system for nist 2005 language

recognition evaluation,” in Proc. of Odyssey 2006: The Speaker
and Language Recognition Workshop, 2006.

4088


